
CHAPTER 3

Sequences

1. Regular and automatic sequences

Examples of functions satisfying linear systems of functional equations
arise from the so-called regular sequences, see [2, chapter 16] and [41, §5.1].

Consider R ⊂ C a subring and u = (u(k))k∈N ∈ RN a sequence with
values in R .

Definition 1. Let q ∈ N , q > 1 , a sequence u ∈ RN is q-regular if
the set of all sub-sequences (u(qek + a))k∈N for a, e ∈ N , 0 ≤ a < qe ,
is contained in a finitely generated R -module. The set of all sub-sequences
(u(qek + a))k∈N , a, e ∈ N , 0 ≤ a < qe , is called the q-kernel of the
sequence.

For the following definition we refer to [2, chapters 4 and 5], especially
sections 4.1, 4.3 and 5.1 therein.

Definition 2. A deterministic finite q-automaton with output in R
consist in a finite set S of states with a distinguished initial state s0 a
transition map δ : S×{0, . . . , q−1} → S and an ouput function τ : S → R .
To each finite word w0 . . . w! on the alphabet {0, . . . , q − 1} it associates
the element of R defined as

τ ◦ δ(s0, w0 . . . w!) = τ ◦ δ(δ(. . . δ(s0, w0), . . . ), w!).

A sequence u = (u(k))k∈N is q-automatic if there exists a deterministic
finite automaton with output that, for all k ∈ N , sends the word formed
with the digits of k in base q (starting on the left with the most significant
digit), to uk .

For a finite word w = w0 . . . w! on the alphabet {0, . . . , q−1} we denote
[w]q the number w0 + w1q + · · · + w!q! . The above definition entails that
some deterministic finite automaton with output produces for any k ∈ N
the k-th element of the given sequence from any word w satisfying [w]q = k .
We may even assume that δ(s0, 0) = s0 . Also, it implies that there exists
some other deterministic finite automaton with output that produces the
given sequence from the word formed with the digits of k in base q written
in reverse order (i.e. starting from the least significant digit).

According to [2, Theorem 6.6.2, page 185], q-automatic sequences are
characterised as the sequences the q-kernel of which is finite. Furthermore,
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30 3. SEQUENCES

Theorem 16.1.5 in [2, page 441] asserts that q-automatic sequences are pre-
cisely the q-regular sequences that take only finitely many values.

Example 11. The Morse -Thue automaton is the following two states
2-automaton with output in {a, b}
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0 0

s0 | a s1 | binput (n)2 output a or b

which produces the Morse -Thue sequence : abbabaabbaababba . . . From this
automatic description it is clear that τ ◦ δ(s0, (n)2) is a or b according to
the sum of digits in the expansion (n)2 of n in base 2 being even or odd.

Given a finite alphabet Σ we denote Σq the set of words of length q
on Σ . A q-morphism on Σ is a map σ : Σ → Σq . It extends naturally to
words on Σ (finite and infinite) by replacing each letter of the word by its
image through σ . For finite words this process multiplies the length of the
word by q .

Consider a q-automatic sequence u = (u(k))k∈N ∈ RN given by a de-
terministic finite q-automaton with output (S, s0, δ, τ) . Viewing S as an
alphabet we set σ : S → Sq the map s (→ δ(s, 0) . . . δ(s, q−1) . If the initial
state s0 satisfies δ(s0, 0) = s0 then u is the image by τ of the unique
word invariant by σ and starting with s0 . Reciprocally, a finite alphabet
S , a q-morphism σ on S , an infinite word s0s1 . . . on S invariant by σ
and a function τ : S → R defines a q-automaton (S, s0, δ, τ) , where δ is
the transition map that sends (s, w) ∈ S × {0, . . . , q − 1} to the (w + 1)-th
letter in σ(s) , that produces the q-automatic sequence τ(s0)τ(s1) . . . .

Example 12. The Morse -Thue sequence is invariant under the 2-mor-
phism on {a, b} defined by σ(a) = ab and σ(b) = ba .

We now cite two important theorems in the theory of automatic se-
quences.

Theorem 25 (A.Cobham [2, Thm.11.2.2]) 25. Let q, q′ > 1 be two
multiplicatively independent integers, a sequence that is both q- and q′-auto-
matic is ultimately periodic.

Theorem 26 (G.Christol [2, Thm.12.2.5]) 26. Let p be a prime
number, q a power of p and Fq the field with q elements. A series
f(z) =

∑
k∈N u(k)zk ∈ Fq[[z]] is algebraic over Fq(z) if and only if the

sequence u is p -automatic.
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2. Generating functions

As in the last theorem of the previous section, to each sequence u ∈ RN

we associate its generating function (or generating series) :

fu(z) :=
∑

k∈N

u(k)zk ∈ R[[z]] .

We deduce from Christol’s and Cobham’s theorems the following character-
isation of algebraic generating series with bounded coefficients.

Theorem 27. Let f(z) ∈ Z[[z]] be a series with coefficients bounded
in Z , then either f(z) is a polynomial or (1 − zN )f(z) is a polynomial,
for some N ∈ N∗ , or f(z) is transcendental over Q(z) . In the first case
the sequence of coefficients of f(z) is finite and in the second case it is
ultimately periodic with length of period dividing N .

Said differently, the theorem asserts that an algebraic function the Taylor
series of which has bounded coefficients in Z , is a rational functional the
poles of which are roots of unity.
Proof – Suppose f(z) =

∑
k∈N u(k)zk algebraic over Q(z) , then according

to [2, Thm.12.6.1] the same holds over Fp(z) for all its reductions modulo
any prime number p . For any p larger than the largest difference between
the coefficients of f(z) , Christol’s theorem 26 implies that the sequence u
is p-automatic. Selecting two distinct such p ’s, Cobham’s theorem 25 shows
that the sequence u is ultimately periodic. Say the period starts at index
M and is of length N , this means that u(mN + $ + M) = u($ + M) for
any m ∈ N and $ = 0, . . . , N − 1 , therefore

f(z) =
M−1∑

k=0

u(k)zk +
∑

m∈N

N−1∑

!=0

u($ + M)zmN+!+M

=
M−1∑

k=0

u(k)zk +
N−1∑

!=0

u($ + M)z!+M
∑

m∈N

zmN

=
M−1∑

k=0

u(k)zk +
1

1− zN
·

N−1∑

!=0

u($ + M)z!+M .

Generating functions of regular sequences satisfy functional equations :

Theorem 28 (K.Nishioka [41, Thm.5.1.2]) 28. A sequence u ∈ RN

is q-regular if and only if there exists an integer r ∈ N∗ and r formal
power series f1 = fu, . . . , fr ∈ R[[z]] satisfying




f1(z)

...
fr(z)



 = A(z)




f1(zq)

...
fr(zq)





where A(z) denote an r × r matrix with entries in R[z] of degree < q .
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Theorem 28 implies that the generating function fu of the q-regular
sequence u satisfies a functional equation of the type

(17)
!∑

i=0

ci(z)fu(zqi
) = 0

with ci(z) ∈ R(z) , c!(z) )= 0 and $ ≤ r . P-G.Becker [9, Theorem 1]
asserts c0(z) )= 0 , but he shows that not all the series satisfying a functional
equation of type (17) with c0(z) )= 0 is the generating function of a q-regular
sequence. Indeed, the function f(z) = 1

z−α , α−1 ∈ R not a root of unity,
satisfies (zq − α)f(zq) − (z − α)f(z) = 0 for any integer q > 1 , but, in
view of theorem 29 below, it is not the generating function of a q-regular
sequence. However, P-G.Becker [9, Theorem 2] proves that all the series
satisfying a functional equation of type (17) with a0 ∈ R \ {0} being a non
zero constant, is the generating function of a q-regular sequence.

Given the integer q > 1 the set of generating functions of q-regular
sequences forms a ring, see [2, Corollary 16.4.2, page 446]. The following
statement put together [9, Lemma 5] and [2, Theorem 16.4.3, page 446].

Theorem 29. The generating function of a q-regular sequence is either
a rational function or it is transcendental over C(z) . A rational function
is q-regular if and only if its poles are roots of unity.

This theorem is to be compared with theorem 27, the intersection of the
two statements asserts that algebraic generating functions of q-automatic
sequences are the rational functions the poles of which are roots of unity.

In the case of generating functions of q-automatic sequences the func-
tional equation can be made explicit easily. Let (S, s0, δ, τ) be a q-auto-
maton that generates a q-automatic sequence u ∈ RN and for s ∈ S put
N(s0, s) = {k ∈ N; s = δ(s0, (k)q)} , where (k)q stands for the word on the
alphabet {0, . . . , q − 1} made of the digits of the number k ∈ N in base
q starting with the most significant. We introduce the following series for
s ∈ S

fs,s0(z) =
∑

k∈N(s0,s)

zk

so that the generating function of u is fu(z) =
∑

s∈S τ(s)fs,s0(z) . Fix-
ing some order on S we denote fs0(z) the column vector with compo-
nents the functions fs,s0(z) , s ∈ S . We also introduce the matrix A(z) =(
as,s′(z)

)
s,s′∈S

where as,s′(z) =
∑

0≤!<q
s=δ(s′,!)

z! ( s index the lines and s′ the

columns of the matrix A(z) ). Assuming again s0 = δ(s0, (0)q) , we verify

fs,s0(z) =
∑

k∈N(s0,s)

zk =
∑

s′∈S

∑

0≤!<q
s=δ(s′,!)

z!
∑

m∈N(s0,s′)

zmq =
∑

s′∈S

as,s′(z)fs′,s0(z
q),

hence the equation
fs0(z) = A(z)fs0(z

q).
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We may replace the initial state s0 by an arbitrary state s′ ∈ S satisfying
s′ = δ(s′, (0)q) in order to get further functions fs,s′(z) =

∑
k∈N(s′,s) zk and

vectors fs′(z) satisfying fs′(z) = A(z)fs′(zq) . In case the map δ(·, (0)q) is
the identity on S , we get a matrix G(z) the columns of which are the
vectors fs′(z) forming a complete set of solution to the equation G(z) =
A(z)G(zq) . We observe that for any s′ ∈ S we have

∑
s∈S fs,s′(z) = 1

1−z
since

⋃
s∈S N(s′, s) is a partition of N .

3. Automatic numbers

In the same vein, a (q, b)-automatic number is a real number such that
the sequence of digits in its expansion in base b is a q-automatic sequence
or, equivalently, a q-regular sequence since it takes only finitely many values.
A number which is (q, b)-automatic for some q is also said b-automatic.

The set of (q, b) automatic numbers is a vector space over the rational
numbers but it is not closed by multiplication or inverse. Rational numbers
are (q, b) -automatic for all integers q, b > 1 and they are the only numbers
that are (q, b) -automatic for two distinct values of q , see [2, chapter 13,
sections 1 and 2].

Theorem 30. Let u1, . . . , u! be q-automatic sequences such that their
generating series are algebraically independent over Q(z) . Then for all
but finitely many integers b > 1 the (q, b)-automatic numbers

∑
k∈N

ui(k)
bk ,

i = 1, . . . , $ are algebraically independent over Q .

Proof – Let f1(z), . . . , f!(z) be the generating series of the q-regular se-
quences u1, . . . , u! . Theorem 28 shows that these series satisfy the hypoth-
esis of theorem 15. Therefore, for all but finitely many algebraic numbers α
satisfying |α| ≤ 1

2 , the values f1(α), . . . , f!(α) are algebraically indepen-
dent over Q . Restricting α to the set of inverse of integers b ≥ 2 gives
the result.

Sadly enough, given a base b the above theorem does not prove the
transcendence of a single automatic number.

Theorem 31 (B.Adamczewski & Y.Bugeaud [1, Thm.2]) 31. Let
b ≥ 2 be an integer, a b-automatic number is either rational or transcen-
dental over Q .

The proof of this result rests on Schmidt subspace theorem which is an
higher dimensional extension of Roth theorem. The main observation is
that the word of digits in the expansion in base b of an automatic numbers
is a stammering word , that is a word which contains arbitrary long sub-
words repeating in fixed proportions. More precisely, an infinite word w =
w0w1 . . . is stammering if there exists a real ξ > 0 and sequences (kn)n∈N ,
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(k′n)n∈N and (k′′n)n∈N with lim
n→∞

kn = ∞ , ξ ≤ k′′n/k′n ≤ 1 , kn/k′n is
bounded above and for any n ∈ N

w = w0 . . . wknwkn+1 . . . wkn+k′nwkn+1 . . . wkn+k′′n . . .

The method apply to real numbers which can be expressed as
∑

k∈N
u(k)
bk

where u = (u(k))k∈N is a stammering word on some finite alphabet and
b > 1 can be any Pisot-Vijayaraghavan or Salem number . Recall that a
Pisot-Vijayaraghavan number (resp. a Salem number) is a real algebraic
integer > 1 the conjugates of which all lie inside the open unit disc (resp.
the closed unit disc, with at least one on the unit circle).

4. Pattern’s counting

Examples of regular sequences are also given by digits counting. Let
d ≥ 2 , m ≥ 1 , and 0 ≤ µ < dm be integers, we may consider the digits of
µ in base d as a pattern of length m (including as many zeros as necessary
on the right in order to get m digits). For any k ∈ N we denote eµ(k)
the number of occurrences of the pattern µ in the expansion of k in base
d .

Proposition 32. With the notations above, the sequence (eµ(k))k∈N

is dm -regular and its generating function feµ(z) =
∑

k∈N eµ(k)zk satisfies
the equation

feµ(z) =
zdm − 1
z − 1

feµ(zdm
) +

m−1∑

j=0

zdjµ(zdj − 1)
z − 1

· 1
1− zdm+j .

The series feµ(z) converges in the unit disc {z ∈ C; |z| < 1} where it
defines a function transcendental over C(z) .

Proof – Introduce the auxiliary sequences ( µ is a pattern of length m ,
j ≥ 1 is a non zero integer and k ∈ N )

uµ(k) =

{
1 if k ≡ µ(dm)
0 otherwise

vj,µ(k) =

{
1 if 0 ≤ k − µdj < dj

0 otherwise

and the indices truncated from µ = µ0 + · · · + µm−1dm−1 :

µ(j) := µ0 + · · · + µm−j−1d
m−j−1 and µ(j) := µm−j + · · · + µm−1d

j−1

for j = 0, . . . ,m (setting µ(m) = µ(0) = 0 ). For 0 ≤ a < dm one checks
the following identity

(18) eµ(dmk + a) = eµ(k) + eµ(a) +
m−1∑

j=1

uµ(j)(k)vj,µ(j)
(a) ,
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where indeed eµ(a) = uµ(0)(a)v0,µ(0)
(a) is equal to 1 if µ = a and 0

otherwise. The sum on j takes care of the occurrences of µ in dmk + a
which are astride upon a and dmk . Since the sequences (uµ(j)(k))k∈N are
dm -regular, we deduce that the same holds for (eµ(k))k∈N .

Next, using (18) we write

feµ(z) =
dm−1∑

a=0

∑

!∈N

eµ(dm$ + a)zdm!+a

=
dm−1∑

a=0

za
∑

!∈N

eµ($)zdm! +
dm−1∑

a=0

za
m−1∑

j=0

vj,µ(j)
(a)

∑

!∈N

uµ(j)($)zdm!

=
zdm − 1
z − 1

feµ(zdm
) +

m−1∑

j=0

dm−1∑

a=0

vj,µ(j)
(a)za

∑

k∈N

zdm+jk+dmµ(j)
.

But,
dm−1∑

a=0

vj,µ(j)
(a)za =

dj−1∑

b=0

zb+djµ(j) =
zdjµ(j)(zdj − 1)

z − 1

and
∑

k∈N

zdm+jk+dmµ(j)
=

zdmµ(j)

1− zdm+j .

Therefore

feµ(z) =
zdm − 1
z − 1

feµ(zdm
) +

m−1∑

j=0

zdmµ(j)+djµ(j)(zdj − 1)
z − 1

· 1
1− zdm+j

and the first part of the theorem is proved because dmµ(j) + djµ(j) = djµ .
The coefficient eµ(k) is bounded by the number of digits of the expan-

sion of k in base d and it grows at most logarithmically as k tends to
infinity : eµ(k) ≤

[
log(k)
log(d)

]
+ 1 , therefore the series feµ(z) converges in the

unit disc {z ∈ C; |z| < 1} .
Now, by theorem 3 we know that feµ(z) is either transcendental over

C(z) or a rational function. But, the coefficients of the series feµ ∈ Z[[z]]
are not bounded as k tends to infinity (think of eµ(µ(1+dm + · · ·+dm!)) =
$ ) and grows at most logarithmically (see above). Lemma 4 implies that
feµ(z) cannot be a rational function, therefore it must be transcendental
over C(z) .

Note that the series feµ(z) and 1
1−zdj , j = 0, . . . ,m − 1 , satisfy the

condition of theorem 28, except that the degrees of the coefficients are not
less than dm .

Combining proposition 32 and theorem 1, we can state :
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Corollary 33. With the notations as in proposition 32, for α ∈ Q∗

an algebraic number of absolute value |α| < 1 the number feµ(α) is tran-
scendental.

Remark 13. Is the value of the generating function of a sequence at
some special algebraic point, meaningful?

Example 14. In base 2 the sequence (e1(k))k∈N satisfies e1(2ek +
a) = e1(k) + e1(a) for 0 ≤ a < 2e and therefore it is 2 -regular (the only
companion sequence is the sequence constant equal to 1 , the generating
function of which is 1

1−z ). The generating function fe1 of (e1(k))k∈N

satisfies the equation

fe1(z
2) =

(1− z2)fe1(z)− z

(1 + z)(1− z2)
.

The sequence (a1(k))k∈N ∈ {±1}N defined by a1(k) = (−1)e1(k) is the
Morse -Thue sequence (on the alphabet {±1} ), its generating function fa1

satisfies the equation

fa1(z
2) =

fa1(z)
1− z

.

Similarly, we check e11(2ek + a) = e11(k) + e11(a) for 0 ≤ a < 2e−1

or 2e−1 ≤ a < 2e and k even and e11(2ek + a) = e11(k) + e11(a) + 1 for
2e−1 ≤ a < 2e and k odd. Thus (e11(k))k∈N is 2 -regular (with companion
sequence the sequence constant equal to 1 , as above) whereas proposition 32
only shows that it is 4 -regular. The generating function fe11 of (e11(k))k∈N

satisfies the equation

fe11(z
2) =

(1− z4)fe11(z)− z3

(1 + z)(1− z4)
.

The sequence (a11(k))k∈N ∈ {±1}N defined by a11(k) = (−1)e11(k) is
known as the Rudin-Shapiro sequence, its generating function fa11 satisfies
the equations

fa11(z
2) =

fa11(z) + fa11(−z)
2

fa11(−z2) =
fa11(z)− fa11(−z)

2z
.

5. Linear recurrences

Linear recurrence sequences also give rise to Mahler type functions,
see [11]. Let’s have a look at the famous Fibonacci sequence defined by

F0 = 0 , F1 = 1 , Fk+2 = Fk+1 + Fk , k ∈ N,

the terms of which are computed as Fk = 1√
5
(αk − αk) , k ∈ N , where

α = 1+
√

5
2 designate the golden ratio and α = 1−

√
5

2 its conjugate.
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For i ∈ N introduce the series

fi(z) :=
∑

k∈N

1
αiz−2k − αiz2k =

∑

m∈N∗

(−1)i(!(m)+1)αi(2!(m)+1)zm ,

where $(m) := 1
2(m2−v2(m) − 1) ( v2 stands for the 2 -adic valuation),

which converges on the unit disc in C , it defines a function satisfying the
functional equation

fi(z2) = fi(z)− 1
αiz−1 − αiz

.

A direct computation shows fi(α) = 1√
5

∑
k∈N∗ F−1

2k+i
− L−1

i+1 where
Li+1 := αi+1 + αi+1 is the (i + 1) -th Lucas number .

Beside f0(z) = z
1−z the function fi , i ∈ N∗ , are transcendental over

C(z) (by theorem 3 it must be either rational or transcendental). Applying
theorem 1 we obtain that for i ∈ N∗ the numbers∑

k∈N

F−1
2k+i

are transcendental over Q . On the other hand a computation gives
∑

k∈N

F−1
2k = F−1

1 +
√

5
(
f0(α) + L−1

1

)
= 1 +

√
5

(
1−

√
5

1 +
√

5
+ 1

)
=

7−
√

5
2

.

Using Kubota’s theorem on algebraic independence of functions, one can
prove the following algebraic independence result, see [42] for a much more
complete version.

Theorem 34. Let 1 ≤ i1 < · · · < im be integers, then the numbers∑
k∈N F−1

2k+i1
, . . . ,

∑
k∈N F−1

2k+im
are algebraically independent over Q .

Proof – Since each number under consideration is expressed as an affine
function of the value at α of the corresponding function fi1(z), . . . , fim(z) ,
according to Theorem 13 it suffices to establish the algebraic independence
of these function over C(z) in order to prove the algebraic independence
of fi1(α), . . . , fim(α) over Q and hence the theorem. Thanks to Kubota’s
theorem 19 the algebraic independence reduces to the linear independence
modulo the rational fractions. Therefore suppose some linear combination

r(z) =
m∑

h=1

chfih(z)

is a rational function r(z) ∈ C(z) . It satisfies the functional equation
r(z2) = r(z) − R(z) with R(z) =

∑m
h=1

ch

αihz−1−αihz
and we notice that

both sets of poles of r(z2) and R(z) are invariant by multiplication by
−1 , since these functions are even and odd respectively.

Then r(z) can have only one pole of a given absolute value ρ )= 0, 1 ,
otherwise r(z2) would have at least four poles of absolute value ρ1/2 and
since R(z) has at most two poles of that absolute value this would implies



38 3. SEQUENCES

that r(z) has also at least two poles of absolute value ρ1/2 and so on we
would produce infinitely many poles of r(z) .

Now, the poles of r(z2) and R(z) of a given absolute value ρ )= 0, 1
must coincide possibly except for one, but then the invariance of the sets of
poles by multiplication by −1 entails that the rational fractions r(z2) and
R(z) indeed have the same poles. Let ρ be the largest absolute value of a
pole of R(z) , then r(z2) has two poles of absolute value ρ and r(z) must
have one pole of absolute value ρ2 , which is impossible by the functional
equation if ρ > 1 . But, in view of its definition, the rational fraction
R(z) has poles ±

(
α
α

)ih/2 , h ∈ {1, . . . ,m} , of absolute values > 1 as soon
as ch )= 0 . This proves that the functions fi1(z), . . . , fim(z) are linearly
independent modulo the rational fractions, hence algebraically independent
over C(z) by Kubota’s theorem 19, and it establishes the theorem.

The above application of Mahler theorem deals with indices in geometric
progression. Actually, for indices increasing more quickly the general term
of the series grows so rapidly that the transcendence of the sum can be
obtained from Roth theorem, see for example [43]. Considering indices in
arithmetic progression, we have a whole zoo of reciprocal sums of Fibonacci
numbers, some of them are algebraic

∑

k∈N∗

(FkFk+2)−1 = 1

∑

k∈N∗

(−1)k(FkFk+1)−1 =
1−

√
5

2

∑

k∈N∗

(F2k−1 + 1)−1 =
√

5
2

,

others transcendental over Q
∑

k∈N∗

F−2s
k ,

∑

k∈N∗

F−s
2k−1 ,

∑

k∈N∗

(−1)kF−2
k ,

∑

k∈N∗

kF−1
2k /∈ Q

for any positive integer s , while the series
∑

k∈N∗ F−1
k is only known to

be irrational. As for the Lucas numbers one knows that for any positive
integer s the series

∑
k∈N∗ L−2s

k and
∑

k∈N∗ L−s
2k are transcendental over

Q . All these transcendence results are corollaries of Nesterenko’s theo-
rem 10, worked out by D.Duverney, Ke. and Ku. Nishioka, I.Shiokawa
in [18] and [19], for the Fibonacci series along with some more general
second order linear recurrences.

The proof consists in writing each series as the value at some algebraic
point of a non constant function which is algebraic over the field generated
by the Ramanujan functions E1(z) , E2(z) and E3(z) and then apply
corollary 11. In particular, this shows as well that the transcendence degree
of the field generated over Q by all the above series is 3 . For example, the
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following formulas can be proved
∑

k∈N∗

1
L2

2k

=
1
2

Θθ2(0, α2)
θ2(0, α2)

− 1
8

,
∑

k∈N∗

1
F 2

2k−1

=
5
2

Θθ3(0, α2)
θ3(0, α2)

,

∑

k∈N∗

1
L2

2k−1

= −1
2

Θθ4(0, α2)
θ4(0, α2)

,
∑

k∈N∗

1
F 2

2k

= 5
(

1
24
− Θη(α4)

η(α4)

)
.

Exercise 15. Try to prove the above formulas and if you encounter
difficulties check the appropriate lemma in [19].

By the third question in exercice 6 in Chap.1, Sec.3, any three of the
above four sums are algebraically independent over Q , but the four are
linked by an algebraic relation. Indeed, by the differential system (10) in
loc. cit. we have

Θθ2(0, α2)
θ2(0, α2)

+
Θθ3(0, α2)
θ3(0, α2)

+
Θθ4(0, α2)
θ4(0, α2)

= 6
Θη(α4)
η(α4)

from which follows a linear relation between the four sums

5
∑

k∈N∗

1
L2

2k

− 5
∑

k∈N∗

1
L2

2k−1

+
∑

k∈N∗

1
F 2

2k−1

+ 3
∑

k∈N∗

1
F 2

2k

= 0 .

We further deduce

−5
∑

k∈N∗

(−1)k

L2
k

=
∑

k∈N∗

1
F 2

2k−1

+ 3
∑

k∈N∗

1
F 2

2k

∑

k∈N∗

1
F 2

k

= 5
∑

k∈N∗

1
L2

2k−1

− 5
∑

k∈N∗

1
L2

2k

− 2
∑

k∈N∗

1
F 2

2k

and since the sums in the right hand side are algebraically independent over
Q we conclude that we can add those on the left hand side to the list of
transcendental sums.

Question 35. Can one devise a method to determine whether a given
sum is algebraic? Or even find the algebraic relations between several sums?
Which type of sums can one hope to deal with?

Remark 16. In another direction, using Mahler’s method for functions
in several complex variables, Becker and Töpfer [11] have proved the tran-
scendency of numbers

∑

k∈N

bh(a1α
dk

1 + · · · + amαdk

m )−1

where m, d ∈ N∗ , d ≥ 2 , a1, . . . , am ∈ Q∗ , (bk)k∈N ∈ QN is a periodic
sequence not identically zero and α1, . . . , αm are multiplicatively indepen-
dent algebraic numbers satisfying |α1| > max(1; |α2|; . . . ; |αm|) and

a1α
dk

1 + · · · + amαdk

m )= 0 , k ∈ N .
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In the case of the inverse Fibonacci series the numbers α and α are not
multiplicatively independent (i.e. a product of powers of these numbers is
equal to 1 ).

The Rogers-Ramanujan continued fraction

RR(z) = 1 + z 1 + z2 1 + z3 1 + · · · =
∏

k∈N

(1− z5k+3)(1− z5k+3)
(1− z5k+1)(1− z5k+4)

enters in the circle of transcendental functions that takes transcendental val-
ues at algebraic points, since it can be expressed in terms of the η Dedekind
function, see [19]. Namely, RR(z) satisfies the equation

RR(z)
z1/5

− z1/5

RR(z)
= 1 + z2/5 η(z1/5)

η(z5)
.

Therefore, for any α ∈ Q , 0 < |α| < 1 , the value RR(α) is transcendental
over Q .


