
CHAPTER 2

Algebraic independence

1. Numbers

We now turn to algebraic independence results. Restricting the type of
functional equations, Mahler proved a result on algebraic independence of
values of several functions.

Theorem 13 (K.Mahler [29]) 13. Let f1(z), . . . , fm(z) be functions
admitting Taylor expansions at the origin, with coefficients in a given number
field and which converge in the open unit disc. We assume that for some
integer d > 1 the fi(z) ’s satisfy the system of functional equations

(11) fi(zd) = aifi(z) + bi(z) , 1 ≤ i ≤ m

with ai algebraic numbers and bi(z) rational fractions with algebraic coef-
ficients.

If α is a non zero algebraic number of absolute value < 1 then the
transcendence degree over Q of the field generated by f1(α), . . . , fm(α) is
equal to the transcendence degree over Q(z) of the field generated by the
functions f1(z), . . . , fm(z) .

This result was extended by K.Kubota [25] to the case of function sat-
isfying functional equations of type (11) with ai = ai(z) being also rational
fractions with rational coefficients, the denominator of which does not vanish
at any αdi , i ∈ N .

Example 7. Let a ≥ 2 be an integer, the series f(z) :=
∑

k∈N zak

defines a function in the unit disc and the functions fi(z) := f(zi) satisfy
the functional equations fi(za) = fi(z) − zi . The functions f1, . . . , fa−1

are algebraically independent over Q(z) and therefore we derive from the-
orem 13 that for all α ∈ Q , non zero, of modulus < 1 , the numbers
f(α), . . . , f(αa−1) are algebraically independent over Q .

Extension of Mahler’s theorem 13 above has led to the following result
which deals with general linear systems of functional equations.

Theorem 14 (K.Nishioka [41, Thm.4.2.1]) 14. In the setting of the
previous theorem 13 assume that the fi(z) ’s satisfy the system of linear
functional equations

(12) fi(zd) =
m∑

j=1

ai,j(z)fj(z) + bi(z) , 1 ≤ i ≤ m
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20 2. ALGEBRAIC INDEPENDENCE

with ai,j(z) and bi(z) rational fractions with algebraic coefficients.
If α is a non zero algebraic number of absolute value < 1 such that

none of the numbers αdk , k ∈ N , is a pole of any ai,j(z) or bi(z) , then
the transcendence degree over Q of the field generated by f1(α), . . . , fm(α)
is equal to the transcendence degree over Q(z) of the field generated by the
functions f1(z), . . . , fm(z) .

We have already remarked that the assumption on the successive d-th
powers of α not being pole of the ai,j(z) ’s and bi(z) ’s is necessary, see
remark 1. It is worth observing that in case the transcendence degree over
Q(z) of the field Q(z, f1(z), . . . , fm(z)) is not m , selecting a base of tran-
scendence of this field does not insure that the values at α of the elements
of this base form a transcendence basis of Q(f1(α), . . . , fm(α)) over Q .
Let g1(z), . . . , gt(z) be a transcendence basis of Q(z, f1(z), . . . , fm(z)) , the
caveat comes from the fact that all the coefficients of an algebraic equation
of a series over Q(g1(z), . . . , gt(z)) may well vanish at some special point
α , but this can only occurs with the values g1(α), . . . , gt(α) not being al-
gebraically independent over Q .

Example 8. As in example 7 let f(z) =
∑

k∈N zak and consider the
functions f1(z) =

(
z − 1

2

)
f(z) and f2(z) = zf(z) , which satisfies the sys-

tem of functional equations

f1(za) = f1(z) + (za−1 − 1)f2(z)− z

(
za − 1

2

)

f2(za) = za−1f2(z)− za+1 .

Each of the functions f1(z) and f2(z) is transcendental and both functions
are related by the linear equation zf1(z) =

(
z − 1

2

)
f2(z) . But, the value at

z = 1
2 of the function f1(z) is zero while the value at z = 0 of f2(z) is

zero.

However, such a collapse can only occurs at finitely many points and we
can state, see [9] for an example of result of this type.

Corollary 15. Let K be a number field and f1(z), . . . , f!(z) ∈ K[[z]]
be series algebraically independent over K(z) . We assume that there ex-
ists series f!+1(z), . . . , fm(z) ∈ K[[z]] such that for some integer d > 1
the fi(z) ’s converge in the open unit disc and satisfy the system of linear
functional equations

fi(zd) =
m∑

j=1

ai,j(z)fj(z) + bi(z) , 1 ≤ i ≤ m

with ai,j(z) and bi(z) rational fractions with algebraic coefficients.
Let 0 < ρ< 1 be a real number, then for all but finitely many alge-

braic numbers α of absolute value < ρ , the numbers f1(α), . . . , f!(α) are
algebraically independent over Q .
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Proof – There are only finitely many numbers α of absolute value < ρ such
that αdk is a pole of some ai,j(z) or bi(z) for some k ∈ N , because the
modules of the dk-th roots of the pole of these functions, tends to 1 as k
tends to infinity. Suppose α distinct from these finitely many numbers,
theorem 14 implies

(13) tr.degQQ(f1(α), . . . , fm(α)) = tr.degQ(z)Q(z, f1(z), . . . , fm(z)).

Up to a reordering of f!+1(z), . . . , fm(z) we may assume that a transcen-
dence basis of Q(z, f1(z), . . . , fm(z)) over Q(z) is given by the series
f1(z), . . . , f!1(z) for some # ≤ #1 ≤ m . For each #1 < m1 ≤ m write
a relation of algebraic dependence of fm1(z) over Q(z, f1(z), . . . , f!1(z)) :

δm1∑

i=0

Am1,i(z, f1(z), . . . , f!1(z))fm1(z)i = 0

where Am1,i ∈ Q[z, X1, . . . , X!1 ] , i = 0, . . . , δm1 , and Am1,δm1
%= 0 . Since

f1(z), . . . , f!1(z) are algebraically independent over Q(z) the function
m∏

m1=!1+1

Am1,δm1
(z, f1(z), . . . , f!1(z))

is non zero and analytic inside the unit disk. Therefore it has only finitely
many zeros in the disk of radius ρ centred at the origin. Suppose now that
α is also distinct from these finitely many zeros, the algebraic relation above
specialises to a non trivial relation of algebraic dependence of fm1(α) over
Q(f1(α), . . . , f!1(α)) :

δm1∑

i=0

Am1,i(α, f1(α), . . . , f!1(α))fm1(α)i = 0

with Am1,δm1
(α, f1(α), . . . , f!1(α)) %= 0 , for m1 = #1 + 1, . . . ,m . Now, if

the values f1(α), . . . , f!1(α) were not algebraically independent over Q the
transcendence degree of the field Q(f1(α), . . . , fm(α)) would be strictly less
than #1 , which is the transcendence degree of Q(z, f1(z), . . . , fm(z)) over
Q(z) and this would contradict (13). Thus the numbers f1(α), . . . , f!(α)
are part of a transcendence basis and are therefore algebraically independent,
as to be proved.

Theorem ([49, Thm.4]) 16. Let f1(z), . . . , fm(z) be functions admit-
ting Taylor expansions at the origin, with coefficients in a given number
field and which converges in the unit disk. We assume that for some integer
d > 1 the fi(z) ’s satisfy the system of linear functional equations

(14) fi(z) =
m∑

j=1

ai,j(z)fj(zd) + bi(z) , 1 ≤ i ≤ m

with ai,j(z) and bi(z) polynomials with algebraic coefficients.



22 2. ALGEBRAIC INDEPENDENCE

If α is a non zero complex number of absolute value < 1 such that none
of the numbers αdk , k ∈ N , is a zero of Det (ai,j(z))1≤i,j≤m , then the
transcendence degree over Q of the field generated by α, f1(α), . . . , fm(α)
is at least the transcendence degree over Q(z) of the field generated by the
functions f1(z), . . . , fm(z) .

Example 7 (continued). With the function f(z) of example 7 for
any α ∈ C , non zero, of modulus < 1 , at least a of the a + 1 numbers
α, f(α), . . . , f(αa−1) are algebraically independent over Q .

Of course, one cannot expect more in theorem 16 since one can always
take α an algebraic number or a number such that some fi(α) is algebraic,
for example. However, for transcendental numbers α which are very well
approximated by algebraic numbers one has the following result. Recall that
a Liouville number is a real number α such that for any real κ > 0 there
exists a reduced fraction p

q satisfying 0 <
∣∣∣α− p

q

∣∣∣ < exp (−κ log(|q| + 1)) ,
such numbers are transcendental over Q .

Theorem 17 (T.Töpfer [54], [41, Thm.4.5.4]) 17. In the setting of
the previous theorem 16, assume the number α is a non zero real number
of absolute value < 1 such that for some reals τ > 2m+1 and c > 0 there
exists an infinite sequence of distinct reduced fractions

(
pk
qk

)

k∈N
satisfying

0 <

∣∣∣∣α−
pk

qk

∣∣∣∣ < exp (−c(log |qk|)τ ) .

Then the numbers f1(α), . . . , fm(α) are algebraically independent over Q .

Since α is transcendental (being obviously a Liouville number) one
would like to add it to the list in the conclusion of theorem 17, thus obtaining
the algebraic independence of the m + 1 numbers α, f1(α), . . . , fm(α) .

2. Functions

As for transcendence results, the first issue in the context of algebraic
independence of values of functions is the algebraic independence of the
functions themselves. We have seen in corollary 15 that the occurrence of
algebraic relations among a complete set of functions satisfying a system of
functional equations of type (12) may impair the transcendence of the value
of one of its transcendental members at some algebraic points.

However, if functions f1(z), . . . , fm(z) satisfy a system of functional
equations of type (12) with the ai,j constant, their algebraic independence
over the field of rational fractions is equivalent to their linear independence
over the field of constants modulo the rational fractions.
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Theorem 18 (K.Nishioka [41, Thm.3.2.2]) 18. In the setting of theo-
rem 13 assume that the fi(z) ’s satisfy the system of linear functional equa-
tions

(15) fi(z) =
m∑

j=1

ai,jfj(zd) + bi(z) , 1 ≤ i ≤ m

with ai,j complex numbers and bi(z) rational fractions with complex coef-
ficients.

The functions f1(z), . . . , fm(z) are algebraically independent over C(z)
if and only if no non trivial linear combination of them with coefficients in
C is a rational function in C(z) ( i.e. for all c1, . . . , cm ∈ C , not all zero,
one has c1f1(z) + · · · + cmfm(z) /∈ C(z) ).

Note that when the determinant of the matrix (ai,j)1≤i,j≤m is non zero,
the system of functional equations (15) is equivalent to the system (12).
However, when this determinant is zero the system (15) would only de-
liver the existence of numbers c1, . . . , cm ∈ C such that c1f1(zd) + · · · +
cmfm(zd) ∈ C(z) whereas system (12) gives c1f1(z)+· · ·+cmfm(z) ∈ C(z) .

The algebraic independence of solutions of another type of functional
equations is given in [25]. In the following theorem we let H denote the mul-
tiplicative subgroup of non zero rational fractions of the form r(z)/r(zd) ,
r(z) ∈ C(z) \ {0} .

Theorem 19 (K.K.Kubota [25]) 19. In the setting of theorem 13
assume that the fi(z) ’s satisfy the system of linear functional equations

fi(zd) = ai(z)fi(z) + bi(z) , 1 ≤ i ≤ m

with ai(z) and bi(z) rational fractions with complex coefficients satisfying
a1(z) . . . am(z) %= 0 . For 1 ≤ i, j ≤ m such that aj ∈ aiH we fix a rational
fraction ri,j(z) such that aj(z) = ai(z)ri,j(z)/ri,j(zd) and otherwise we set
ri,j(z) = 0 .

Consider a maximal subset I of indices i ∈ {1, . . . ,m} such that the
ai(z) ’s, i ∈ I , are distinct modulo H . For i ∈ I we set Vi the C-
vector space Vi =

∑m
j=1 Cri,j(z)fj(z) and Wi the C-vector space of solu-

tions of the functional equation g(zd) = ai(z)g(z) . We also introduce the
multiplicative subgroup G generated by the ai(z) ’s for i ∈ I such that
Wi ∩ (Vi + C(z)) %= 0 .

Then the transcendence degree of the field generated by f1(z), . . . , fm(z)
over C(z) is equal to

∑

i∈I

dimC (Vi/Vi ∩ (Wi + C(z))) + rankZ (GH/H) .

Furthermore, the ideal of algebraic dependence relations is generated by
relations of the following form :

•
∑m

j=1 cjri,j(z)fj(z) ∈ C(z) with c1, . . . , cm ∈ C ;
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•
∏

i∈I

(∑m
j=1 ci,jri,j(z)fj(z)− ri(z)

)mi

∈ C(z)× with ci,j ∈ C ,
j = 1, . . . ,m , ri(z) ∈ C(z) and mi ∈ Z , for i ∈ I .

This theorem is in fact valid for functions of several variables satisfying a
system of linear equations of Mahler type for some monomial transformation
of the variables, see [41, Thm.3.5]. The theorem is also valid replacing
the transformation z '→ zd of the variable by a rational transformation
z '→ r(z) with r(z) ∈ C(z) , as long as the constants are the only functions,
meromorphic in a neighbourhood of the origin, satisfying g ◦ r = g .
Proof – For each i ∈ I one selects indices j such that ri,j(z) %= 0 and the
corresponding functions ri,j(z)fj(z) induce a basis of Vi/Vi ∩ (Wi +C(z)) .
Letting δi denote the dimension of this vector space, this gives sets of
functions gi,h(z) = ri,jh(z)fjh(z) , h = 1, . . . , δi , i ∈ I , satisfying functional
equations

gi,h(zd) = ai(z)gi,h(z) + bi,h(z).
Furthermore, for i ∈ I and any reals c1, . . . , cδi there is no rational solu-
tion to the functional equation g(zd) = ai(z)g(z) +

∑δi
h=1 chbi,h(z) , since

such a solution r(z) ∈ C(z) would lead to a non trivial linear relation
between the images of gi,1(z), . . . , gi,δi(z) in Vi/Vi ∩ (Wi + C(z)) , namely∑δi

h=1 chgi,h(z)− r(z) ∈ Wi with r(z) ∈ C(z) .
Then, one chooses a maximal subset of J ⊂ I so that 0 %= Wi ⊂

Vi + C(z) and the corresponding generators ai(z) of G are free modulo
H . This gives functions satisfying gi(zd) = ai(z)gi(z) , i ∈ J .

Using the dependence relations described in the statement of the the-
orem, one shows that the functions f1(z), . . . , fm(z) belong to the alge-
braic closure of the field generated over C(z) by the functions gi,j(z)
and gi(z) . However, these latter functions satisfy the hypothesis of [41,
Thm.3.5], which implies that they are algebraically independent over C(z) .
The transcendence degree of the field generated by f1(z), . . . , fm(z) over
C(z) is therefore equal to

∑
i∈I δi + card(J) , which is just the statement

of the theorem.

Question 20. Can one extend theorem 19 to more general system of
functional equations of type

fi(zd) =
m∑

j=1

ai,j(z)fj(z) + bi(z) , 1 ≤ i ≤ m?

One can try to answer this question using Galois theory for σ -fields,
that is fields endowed with an endomorphism. In our context one would
consider the field of meromorphic functions, for example, together with the
Mahler endomorphism induced by the change of variable z '→ zd . Such an
approach is studied by P.Nguyen in [36] who recovers in this way the main
features of theorem 19. It is worth noting that the same question arises in
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the theory of E-functions where it is handled with the help of differemtial
Galois theory .

3. Rational transformation of the variable

Just as in transcendence theory, one may be interested in transformation
of the variable z that are more general than the power transformation
z '→ zd of the previous sections. In theorem 2, P-G.Becker treats algebraic
transformations of the variable. Up to now, Mahler’s method for algebraic
independence (of values of functions of one variable) allows only to deal with
rational transformations. Let r(z) ∈ Q(z) , we assume that the origin is a
super-attracting (or critical) fixed point of r , that is ord0(r) ≥ 2 . Denote
Ur(0) the basin of attraction of 0 for r , that is the set of points z ∈ C
such that r◦k(z) tends to 0 as k tends to ∞ and r◦k(z) %= 0 for all
k ∈ N . The degree of r is the maximum of the degrees of its numerator
and denominators in reduced form.

Theorem 21 (E.Zorin) 21. Let f1(z), . . . , fm(z) be functions admit-
ting Taylor expansion at the origin, with coefficients in a given number field
and which converges in a neighbourhood of the origin. We assume these
functions algebraically independent over C(z) and satisfy a system of func-
tional equations

(16) fi(z) =
m∑

j=1

ai,j(z)fj(r(z)) + bi(z)

with ai,j(z) and bi(z) rational functions with algebraic coefficients. Let
α ∈ Ur(0)∩Q such that for any k ∈ N none of the numbers r◦k(α) is not
a pole of any ai,j(z) or bi(z) , nor a zero of Det(ai,j(z)) .

Then the transcendence degree over Q of the field generated by the num-
bers f1(α), . . . , fm(α) is at least

2m + 1− (m + 1)
log(deg(r))
log(ord0(r))

.

This statement improves upon previous results by T.Töpfer [55], but
it becomes weaker as the degree of r is larger than its order at 0 . The
optimal result ( m numbers algebraically independent over Q ) is obtained
when r(z) has the shape r(z) = zd

p(z) where d ≥ 2 is an integer and p(z)
is a polynomial of degree ≤ d satisfying p(0) %= 0 .

Example 9. Consider non constant polynomials q1(z), . . . , qm(z) with
algebraic coefficients.

1. Assuming qi(0) = 0 , the series fi(z) =
∑

k∈N qi ◦ r◦k(z) define
functions satisfying fi ◦ r(z) = fi(z)− qi(z) , i = 1, . . . ,m .

2. Assuming |qi(0)| > 1 , the series fi(z) =
∑

k∈N

∏k
h=0(qi◦r◦h(z))−1

define functions satisfying fi ◦ r(z) = qi(z)fi(z)−1 , i = 1, . . . ,m .
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In both cases, one has to find conditions on the qi(z) ’s so that the set of
functions is algebraically independent over C(z) . Compare these functions
with those of example 2.

With the help of theorem 18 and 19 (extended to rational transforma-
tions), one can give in each case a criterion for the algebraic independence
of the function f1(z), . . . , fm(z) over C(z) .

1. If f1(z), . . . , fm(z) are C-linearly independent modulo C(z) then
they are algebraically independent over C(z) . This occurs when
q1(z), . . . , qm(z) are C-linearly independent modulo the additive
subgroup of rational fractions of the form t(z) − t ◦ r(z) , t(z) ∈
C(z) .

2. If q1(z), . . . , qm(z) are pairwise distinct modulo the multiplicative
subgroup of rational fractions of the form t(z)/t ◦ r(z) , t(z) ∈
C(z) \ {0} and there is no rational fraction solution to the func-
tional equations g ◦ r(z) = qi(z)g(z) − 1 for i = 1, . . . ,m , then
the functions f1(z), . . . , fm(z) are algebraically independent over
C(z) .

Assume now that r(z) is a polynomial with algebraic coefficients, we
have a sharper lower bound, again improving on previous results established
by T.Töpfer [55].

Theorem 22 (E.Zorin) 22. The setting is the same as in theorem 21,
but now r(z) is a polynomial with algebraic coefficients. Let α ∈ Ur(0)
such that for any k ∈ N none of the numbers r◦k(α) is not a pole of any
ai,j(z) or bi(z) , nor a zero of Det(ai,j(z)) .

Then the transcendence degree over Q of the field generated by the num-
bers α, f1(α), . . . , fm(α) is at least

m + 1−
[
2

log(deg(r))
log(ord0(r))

]
.

If α is algebraic then the transcendence degree over Q of the field generated
by the numbers f1(α), . . . , fm(α) is at least

m + 1−
[

log(deg(r))
log(ord0(r))

]
.

We observe that in the two above theorems we assume, in contrast with
the results of section 1, that there is no relation of algebraic dependence
among the whole set of functions forming a solution of the functional equa-
tion.

In case r(z) = zd theorem 22 gives the algebraic independence of the
m numbers f1(α), . . . , fm(α) when α is algebraic. However, when α is
not algebraic it only gives the lower bound m − 1 , rather than the ex-
pected m , for the transcendence degree of the field generated by the num-
bers α, f1(α), . . . , fm(α) .
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For the proof of the two theorems of this section, when ord0(r) < deg(r)
one needs a multiplicity estimate. In constrast, when ord0(r) = deg(r) such
a multiplicity estimate is only needed for establishing measures of algebraic
independence.

Also, the arithmetic growth of the Taylor coefficients of the functions
involved is crucial. Here are general estimates for solutions of functional
equations of type (16), taken from [55, lemma 7 & 12].

Lemma 23. The setting being the same as in theorem 21, where we
assume Det(ai,j(z)) %= 0 , write fi(z) =

∑
k∈N fi,kzk for i = 1, . . . ,m .

Then there exists a number field K , a real C ≥ 1 and a positive integer
D such that |σ(fi,k)| ≤ Ck+1 and Dk+1fi,k is an algebraic integer for
i = 1, . . . ,m and σ any embedding of K in C .

Lemma 24. The setting being the same as in theorem 22, where we
assume r(z) ∈ Q[z] and Det(ai,j(z)) %= 0 , write fi(z) =

∑
k∈N fi,kzk for

i = 1, . . . ,m . Then there exists a number field K , a real C ≥ 1 and a
positive integer D such that |σ(fi,k)| ≤ C log(k+2) and D[log(k+2)]fi,k is an
algebraic integer for i = 1, . . . ,m and σ any embedding of K in C .

Example 10. 1) The function f(z) =
∑

k∈N

∏k
j=0

1
2(1−3zdj )

satisfies

the functional equation f(z) = 1
2(1−3z)

(
f(zd) + 1

)
. It has Taylor expansion

around the origin f(z) =
∑

!∈N f!z! with

f! =
∑

k∈N

2−k
∑

h0,...,hk∈N

h0+···+hkdk=!

3h0+···+hk .

Considering the term for k = 0 in the expression of f! one checks |f!| ≥ 3!

and, taking into account the number of possible (h0, . . . , hk) for each k ∈
N , one has |f!| ≤ 3!(1+o!(1)) .

2) The function g(z) =
∑

k∈N

∏k
j=0

1
2

(
1 + 3zdj

)
satisfies the functional

equation g(z) = 1
2 (1 + 3z)

(
g(zd) + 1

)
. It has Taylor expansion around the

origin g(z) =
∑

!∈N g!z! with

g! =
∑

k∈N

2−k
∑

h0,...,hk∈{0,1}
h0+···+hkdk=!

3h0+···+hk .

One then checks that g! is zero except when the expansion of # in base
d shows only the digits 0 and 1 . And then g! = 22−ν(!,d)3σ(!,d) , where
ν(#, d) ( resp. σ(#, d) ) designates the number of digits ( resp. the sum of
digits) in the expansion of # in base d . Therefore one has |g!| ≤ 4

(
3
2

)ν(!,d)

with equality if # = 1+ · · ·+dk for some k and in this latter case ν(#, d) =
log(!(d−1)+1)

log(d) + 1 and |g!| = #
log(3/2)
log(d) +o!(1) .


