
CHAPTER 1

Introduction to Mahler theory

The purpose of transcendence theory is to prove that numbers of all kind
are transcendental. Numbers of interest may be given by means of series,
infinite products, integrals or continued fractions, for example. It is fair to
say that such numbers can likely be also produced (possibly in many ways)
as values of transcendental functions which are analytic in some domain.
However, whereas the numbers are going to be proved transcendental over
some base field (e.g. Q ), the functions have to be transcendental over the
field of rational fractions with coefficients in this base field and the argument
should be algebraic over this same base field.

Proving that transcendental functions takes transcendental values may
look like working hard to check what everybody expects and it may seem
more exciting to find unexpected algebraic relations between remarkable
numbers. On an other hand, too much exotic relations can also bring be-
wilderment and then one can reformulate the task of transcendence and
algebraic independence theory as showing that algebraic relations between
numbers comes from algebraic relations between functions.

Concerning the values of the exponential function, a beautiful conjecture
due to S.Schanuel is, according to S.Lang, supposed to contain all the rea-
sonable statements one could wish to formulate on their algebraic relations.
It states that, given a collection of complex numbers linearly independent
over the field of rational numbers, then the transcendence degree of the field
generated by these numbers and their images by the exponential function
should be at least equal to the numbers of members of the given collec-
tion. As a consequence, it entails a positive answer to the celebrated four
exponential conjecture asserting that given to couples of non zero complex
numbers, say (x1, x2) and (y1, y2) , the ratio of which are irrational, i.e.
x1/x2 /∈ Q and y1/y2 /∈ Q , then at least one of the four exponentials
ex1y1 , ex2y1 , ex1y2 , ex2y2 , is transcendental over Q . Although this conjecture
is still open, we can mention the famous six exponential theorem, due to
K.Ramachandra and S.Lang : given (x1, x2, x3) and (y1, y2) collections
of complex numbers linearly independent over Q , at least one of the six
exponentials ex1y1 , ex2y1 , ex3y1 , ex1y2 , ex2y2 , ex3y2 , is transcendental over Q .

In this chapter we present some transcendence results that have been
obtained through the so-called Mahler method, which applies around an
attractive fixed point of a dynamical transformation leaving unchanged a
function field.
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1. Transcendence

1.1. Numbers. The method that K.Mahler devised in his seminal pa-
pers [28, 29, 30] for proving the transcendence and algebraic independence
of values of functions analytic in the neighbourhood of some point, rests
on the property that one could produce other points where these functions
take values which can be expressed algebraically in terms of the value at the
initial point.

In [28] this property took the form of the functional equation :

(1) f(zd) = R(z, f(z))

where d ≥ 2 is an integer and R is a rational function in z and f(z) ,
with coefficients in some number field. Mahler then considers the solutions
of (1) admitting a Taylor expansion at the origin the coefficients of which
belong to a given number field, he proves :

Theorem 1 (K.Mahler [28]) 1. In the above setting assume f is
transcendental and the degrees in f(z) of the numerator and denominator
of R(z, f(z)) are < d . Consider α a non zero algebraic number of absolute
value < 1 such that none of the numbers αdk , k ∈ N , is a zero of the
denominator of R(z, f(z)) , f(α) is defined and (1) holds at z = αdk ,
k ∈ N , then f(α) is transcendental.

Remark 1. The assumption on the successive d-th powers of α not
being zero of the denominator of R is necessary. P-G.Becker [9, Remark 1]
( see also [42]) mention the case of the function

f(z) =
∏

i∈N

(1− 2zdi
) = 1 +

∑

k∈N
(ε0,...,εk−1)∈{0,1}k

(−2)1+εk−1+···+ε0 .zdk+εk−1dk−1+···+ε0

satisfies the functional equation

f(zd) =
f(z)

1− 2z
.

It vanishes at every α satisfying αdi = 1/2 for some i ∈ N and it is
transcendental, since it has infinitely many zeros.

K.Nishioka [40, Thm.1.5.1] has relaxed the condition on the degrees in
f(z) of the numerator and denominators of R , requiring only that they
are < d2 for the same conclusion, see also Theorem 2 below. Actually,
K.Nishioka deals with more general functional equations of the type :

(2) E(f(zd), f(z), z) = 0 , E ∈ Q[X, Y, Z] \ Q[Y,Z] .

P-G.Becker has further generalised the method replacing the power trans-
formation z $→ zd by a rational one [7] (see also [36] for polynomial trans-
formations), then by an algebraic one [8] z $→ t(z) where t is non constant,
algebraic over Q(z) and meromorphic in a neighbourhood U of one of its
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attractive fixed points ω ∈ C ∪ {∞} . In the next statement, we will re-
strict U to be contained in the basin of attraction of ω and we denote
T ∈ Q[X, Y ] a minimal equation of t over Q(z) : T (t(z), z) ≡ 0 .

Theorem 2 (P-G.Becker [8]) 2. In the above setting assume f is
holomorphic in U with algebraic Taylor coefficients at ω , satisfies the func-
tional equation

(3) E(f(t(z)), f(z), z) ≡ 0 , E ∈ Q[X, Y, Z]

and is transcendental over C(z) . Further assume

(4) degY (T ) max(degY (T ); degY (E))(degX(T ) degX(E))2 < ordω(t)3 ,

then for α an algebraic number in U such that E(X, f(t◦k(α)), t◦k(α)) )≡ 0
and t◦k(α) )= ω for k ∈ N , the number f(α) is transcendental.

Condition (4) is technical, it is a problem to find an optimal condi-
tion that could replace it. In case t(z) = zd and equation (3) is linear in
X , then f satisfies an equation of type (1) and condition (4) reduces to
max(d; degf (R)) < d2 .

The simplest form of functional equation is for R(z, f(z)) = a(z)f(z) +
b(z) with a, b ∈ Q(z) . The most classical example then comes for a(z) = 1 ,
b(z) = −z and t(z) = zd , that gives f(z) =

∑
k∈N zdk .

Example 2. Let m ∈ N∗ , q, r, s ∈ Q(z) \ Q , the formal sum and
product

f(z) :=
∑

k∈N

q ◦ r◦k(z)
k−1∏

j=0

s ◦ r◦j(z) , g(z) :=
∏

k∈N

(
s ◦ r◦k(z)

)mk

,

where r◦k denote r ◦ · · · ◦ r iterated k times, define holomorphic functions
f(z) (resp. g(z) ) in the neighbourhoods of any point ω in s−1(0) ⊂ C∪{∞}
(resp. s−1(1) ⊂ C ∪ {∞} ) which is an attracting fixed point for r . These
functions satisfy the functional equations

f(z) = s(z)f(r(z)) + q(z) , g(z) = s(z)g(r(z))m .

We assume 0 < deg(r) < ordω(r)3/2 in the first case (functions f ) and
0 < mdeg(r) < ordω(r)3/2 in the second case (functions g ).

We now apply theorem 2. Let α be an algebraic number satisfying
limk→∞ r◦k(α) = ω but r◦k(α) )= ω , k ∈ N . Suppose the function f(z)
is transcendental over C(z) and s ◦ r◦k(α) )= ∞ , k ∈ N , then the number
f(α) is trancendental. Suppose the function g(z) is transcendental over
C(z) and s ◦ r◦k(α) )= 0,∞ , k ∈ N , then the number g(α) is transcen-
dental.
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1.2. Functions. The most obvious property the considered function
must satisfy in theorem 1 and 2 is that it has to be transcendental. However
usually it is not the most obvious task to check this (see example above).
But it turns out that in case of equations of type (1) solutions which are
algebraic power series must be in fact rational functions (mind that the
author of the next theorem is Keiji Nishioka although the reference points
to Kumiko Nishioka’s Lecture Notes . . . a family affair!).

Theorem 3 (K.Nishioka [40, thm.1.3]) 3. Let d > 1 be an integer, R
be a rational function in C(X, Y ) and f ∈ C[[z]] satisfying either equation

f(zd) = R(z, f(z)) or f(z) = R(z, f(zd)) .

Then f ∈ C(z) or f is transcendental over C(z) .

A series f(z) =
∑

k≥0 fkzk , with coefficients in some subfield K of
C , is a rational function if and only if the sequence (fk)k∈N ∈ KN is
ultimately linear recursive, that is satisfies for k larger than the degree of
the numerator of f a recurrence relation

fk = c1fk−1 + · · · + cnfk−n , fk = P1(k)αk
1 + · · · + Ps(k)αk

s ,

where 1,−c1, . . . ,−cn ∈ K , cn )= 0 are the coefficients of the denominator
of f (of degree n and normalised so that its constant coefficient is 1 ),
α−1

1 , . . . , α−1
s are the distinct roots of this denominator and Pi ∈ K(αi)[z]

has degree equal to the multiplicity of αi in the denominator of f (i.e. as
a pole of f ) minus 1 , for i = 1, . . . , s . That is

den(f) = 1− c1z − · · · − cnzn =
s∏

i=1

(1− zαi)deg(Pi)+1 .

We denote by I the set of indices i ∈ {1, . . . , s} such that |αi| is maximal
equal to A = max1≤j≤s(|αj |) and D the maximum of deg(Pi) for i ∈
I . For k large enough we have |fk| ≤ γ′2k

DAk for some real γ′2 > 0
independent of k .

Let’s put δ = mini,j∈I;i*=j(|αi − αj |) · mini∈I(|αi|−1) > 0 , thanks to a
theorem of Túran, cf. [40, p.59], for any k ∈ N there exists k+1 ≤ κ ≤ k+ν
such that∣∣∣∣∣

∑

i∈I

pi,Dακ
i

∣∣∣∣∣ ≥
1
ν

(
δ

2

)ν−1 ∑

i∈I

|pi,D||αi|κ =
1
ν

(
δ

2

)ν−1 ∑

i∈I

|pi,D|Aκ

where pi,D is the coefficient (possibly 0 ) of zD in Pi and ν ≤ n is the
cardinality of I . Since

∑
i∈I |pi,D| > 0 by the definition of D , we deduce

that there exists γ2 > γ1 > 0 satisfying for k large enough

(5) γ1k
DAk < max(|fk+1|, . . . , |fk+ν |) < γ2k

DAk .

Lemma 4. Let K ⊂ C be a subfield and f(z) =
∑

k∈N fkzk ∈ K[[z]] a
series which is a rational function. Then there exists ν ∈ N∗ such that the
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sequence (max(|fk+1|, . . . , |fk+ν |))k∈N is either bounded or grows at least
linearly as k tends to infinity.

If f(z) ∈ Z[[z]] is a rational function the denominator of which is not
a product of cyclotomic polynomials, then there exists ν ∈ N∗ such that
the sequence (max(|fk+1|, . . . , |fk+ν |))k∈N grows exponentially as k tends
to infinity.

Proof – The first part follows directly from (5). For the second, lemma
2.6.1 in [40] shows that the αi ’s compose complete sets of conjugates of
algebraic integers. Therefore, if they are not all roots of unity one of them
has absolute value A > 1 , hence the conclusion.

Remark 3. Theorem 3 cannot be immediately extended around a fixed
point ω of a rational substitution z $→ t(z) in place of z $→ zd , with
t ∈ C(z) and ordω(t) > 1 .

For example, the truly algebraic function ϕ(z) = 2z
1+
√

1−4z2 satisfies the

equation ϕ
(

z2

1−2z2

)
= ϕ(z)2 and around the origin it has a Taylor expansion

in Q[[z]] starting as z + z3 + O(z5) .

Example 4. Coming back to example 2, theorem 3 implies that a func-
tion f or g , associated to r(z) = zd , d > 1 , and s ∈ Q(z) \ Q , is
either rational or transcendental. In some special circumstances they can be
rational, for m = 1 , r(z) = zd and s(z) = 1 + z + · · · + zd−1 we have :

g(z) =
1

1− z
.

In fact, for r(z) = zd , 0 < s1 < · · · < s% < d and s(z) = 1+ zs1 + · · ·+ zs"

and m = 1 the corresponding function g(z) has the Taylor expansion∑
k∈N ws(k)zk where ws(k) is 1 if the only digits appearing in the ex-

pansion of k in base d are 0, s1, . . . , s% and 0 otherwise.
When r(z) is not a monomial can such a function as in example 2 be

algebraic?

On an other hand, given a functional equation of type (3) there exists a
power series solution.

Theorem 5 [40, Thm.1.7.2] 5. Let d ∈ N∗ , K ⊂ C be a subfield and
E ∈ K[X, Y, Z] such that E(0, 0, 0) = 0 and E′

Y (0, 0, 0) )= 0 . Then there
exists a power series f ∈ zK[[z]] satisfying

E(f(zd), f(z), z) ≡ 0

and converging on some disc of positive (effectively computable) radius, cen-
tred at the origin.
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2. A dynamical point of view

2.1. Julia sets. One context where Mahler functions beautifully occurs
has been pointed by P-G.Becker and W.Bergweiler [10], it is in connexion
with the dynamic of polynomials.

Let’s recall that the Julia set of a rational function r (in one complex
variable) is the complement of the set of point where the family of iterates
(r◦k)k∈N∗ is normal (here r◦k stands for r◦· · ·◦r iterated k times). That
is one can extract from any infinite sequence of iterates a sub-sequence which
converges uniformly (to an analytic function or infinity) on some compact
neighbourhood of the given point. Alternatively, the Julia set of r can be
described as the closure of the set of periodic points z that are repelling ,
i.e. such that r◦k(z) = z and |(r◦k)′(z)| =

∏k−1
%=0 |r′ ◦ r◦%(z)| > 1 , for some

k ∈ N∗ . It is invariant under direct and inverse image by r , in fact the
set of pre-images by r◦k , k ∈ N , of any point of the Julia set is dense in
it. In almost all cases this set has a fractal dimension in ]0, 2[ , but it may
be either totally disconnected or arcwise connected with empty interior or
equal to C , see [24].

If r is a polynomial the Julia set is also the boundary of the set of points
z ∈ C such that r◦k(z) remains bounded in C as k tends to ∞ . This
latter set is called the full Julia set of the polynomial r .

c=0.3+0.5i c=−(0.1568···+0.6497...i) c=0.285+0.01i

Figure 1. Three Julia sets for r(z) = z2 + c . . .

Example 2 (continued). Let s ∈ Q(z) \ Q and fix ω ∈ s−1(0) (re-
spectively ω ∈ s−1(1) ). For p ∈ Q[z] \ Q a non constant polynomial, set
rω,p(z) = 1

p(1/z−ω) + ω and denote by Kp the full Julia set of p .
The condition on the algebraic number α in example 2 now reduces to

(α − ω)−1 /∈ Kp . Indeed, we have r◦kω,p(z) = 1
p◦k(1/z−ω)

+ ω for all k ∈ N∗

and limk→∞ r◦kω,p(α) = ω if and only if limk→∞ p◦k(1/(α−ω)) = ∞ , that is
precisely 1/(α− ω) /∈ Kp . The condition r◦kω,p(α) )= ∞ , k ∈ N∗ , amounts
simply to α )= ω in this case.



2. A DYNAMICAL POINT OF VIEW 11

2.2. Quadratic polynomials and the Mandelbrot set. For the
epitomical example rc(z) = z2 + c , c ∈ C , B.Mandelbrot introduced his
famous set M composed of the parameters c for which the full Julia set
Kc of rc is connected. It turns out that the complement of M in C can
also be described as

M =
{

c ∈ C; r◦kc (0) remains bounded as k tends to ∞
}

.

In fact, P.Fatou and G.Julia proved that the full Julia set Kc is connected
if and only if 0 belongs to Kc . And if not, then Kc is homeomorphic
to the Cantor set. On an other hand, A.Douady and J.H.Hubbard have
proved [17, Thm.5] that the Mandelbrot set itself is connected.

Question 6. Is the Mandelbrot set M locally connected?

Figure 2. . . . and the Mandelbrot set

For c ∈ C there exists a solution to the functional equation

(6) ϕc(z2 + c) = ϕc(rc(z)) = r0(ϕc(z)) = ϕc(z)2

that is defined and analytic near the point at infinity and leaves this point
fixed. Since ϕc(z) is analytic and non vanishing near the point at infinity,
the function log |ϕc(z)| is harmonic (i.e. solution to Laplace’s equation)
for |z| large enough. It has a continuous extension ηc(z) to C that is
identically zero on Kc , which is harmonic on the whole C\Kc and satisfies
ηc(z2+c) = 2ηc(z) . The boundary of C\Kc is Jc∪{∞} (where Jc denotes
the Julia set of rc ) and near the point at infinity ηc(z) behaves like log |z|
while ηc(z) vanishes on Jc ⊂ Kc . The minimum principle for harmonic
functions implies that ηc(z) > 0 for all z ∈ C\Kc . In particular, if c /∈ M
then 0 /∈ Kc and therefore ηc(0) > 0 , while if c ∈ M then 0 ∈ Kc and
ηc(0) = 0 .

Setting Lc := {z ∈ C; ηc(z) ≤ ηc(0)} ⊃ Kc , Douady and Hubbard
showed that the function ϕc can be itself extended to a conformal map (i.e.
that preserves angles and dilates length equally in any direction) from C\Lc

to C \ Dc , where Dc is the closed disc of radius eηc(0) ≥ 1 . Considering
the value of ηc(0) we check that if c /∈ M then ηc(c) = 2ηc(0) > ηc(0) and
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therefore c /∈ Lc , while if c ∈ M then Lc = Kc and Dc is the closed unit
disc in C .

Douady and Hubbard deduce from the above considerations the exis-
tence of a map Φ : C\M → C\D0 , c $→ ϕc(c) , that defines an isomorphism
between C \ M and C \ D0 ( D0 the closed unit disc in C ).

The conformal map ϕc : C \ Lc → C \ Dc satisfies the functional
equation (6) it has an inverse function ψc which satisfies the functional
equation

(7) ψc(z2) = ψc(r0(z)) = rc(ψc(z)) = ψc(z)2 + c .

The functions ϕc and ψc are tangent to the identity at infinity where they
have Laurent expansion in Q(c)((1/z)) starting as z + O(1/z) .

Lemma 7. With the above notations, the function ψc is rational for
c = −2, 0 and transcendental otherwise.

Proof – Theorem 3 implies that the function ψc is either rational or tran-
scendental. But, the only possible pole of a rational solution to (7) is the
origin and the desired solution must expand at infinity as z + O(1/z) .
Therefore we are reduced to find a polynomial solution a(z) ∈ C[z] of the
equation : a(z2) = a(z)2 + cz2(n−1) , of degree n ≥ 1 , prime to zn−1 . A
quick analysis shows that it can exists only when c = 0 (then n = 1 and
a(z) = z ) or c = −2 (then necessarily a(z) = zn + zn−2 and n = 2 ).

Remark 5. For c ∈ {−2, 0} one has : ψ−2(z) = z + z−1 , ϕ−2(z) =
z
2

(
1 +

√
1− 4

z2

)
(the square root is defined with a cut along ] −∞, 0] so

that
√

1 = 1 ) and ψ0(z) = z , ϕ0(z) = z .
Note that J−2 = K−2 = [−2, 2] ⊂ R while K0 is the closed unit disc

in C and J0 is the unit circle. In particular, −2 and 0 belongs to M ,
since 0 ∈ K−2 ∩K0 .

In this context, we can show that for c )= −2, 0 the functions ϕc and ψc

take algebraic points to transcendental ones. In order to apply theorem 2 we
have to exchange the point at infinity with 0 , this is done by considering the
function f(z) := 1/ψc(1/z) , which satisfies the functional equation f(z2) =

f(z)2

cf(z)2+1 of type (1), and has a Taylor expansion at 0 with coefficients in

Q(c) . For α ∈ Q of modulus > eηc(0) and i ∈ N we have ψc(α2i) ∈
ψc(C \ Dc) = C \ Lc and therefore ψc(α2i) )= 0 since 0 ∈ Lc . By the
functional equation we deduce ψc(α2i)2 + c )= 0 , and cf(1/α2i)2 + 1 )= 0
for all i ∈ N . We can state :

Theorem 8. For c ∈ Q \ {−2, 0} and α ∈ Q of modulus > eηc(0) , the
number ψc(α) is transcendental.

On the other side, for c as above and β ∈ Q \ (Lc ∩Q) , then ϕc(β) is
transcendental.

In particular, if c ∈ Q \ (M ∩Q) then Φ(c) is transcendental.
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Question 9. What conditions on parameters c1, . . . , cq ∈ Q \ {−2, 0}
force the functions ϕc1 , . . . , ϕcq to be algebraically independent over Q(z) ?
What is the transcendence degree of the field generated over Q by their
values at a point in Q \ (Lc1 ∪ · · · ∪ Lcq) ∩Q ?

For c, u ∈ C , u /∈ Kc , the sequence (r◦kc (u))k∈N tends to infinity as k

tends to infinity. The asymptotic behaviour is r◦kc (u) ∼ Θc(u)2k as k →∞ ,
where log(Θc(u)) = limk→∞ 2−k log(r◦kc (u)) . Since ϕc(z) = z+O(1/z) , one
has

log(Θc(u)) = lim
k→∞

2−k log(ϕc(r◦kc (u)))

= lim
k→∞

2−k log(r◦(k−%)
0 (ϕc(r◦%c (u))))

= 2−% log(ϕc(r◦%c (u)))

for any + ∈ N large enough so that r◦%c (u) /∈ Lc . Hence Θc(u) is transcen-
dental for c ∈ Q \ {−2, 0} and u ∈ Q \ (Kc ∩Q) . We note that Θ0(u) = u

and Θ−2(u) = u
2

(
1 +

√
1− 4

u2

)
. This gives in particular the answer to a

question of J.N.Franklin and S.W.Golomb, see [20], [10] and [40, §1.6].

3. A non example and a true extension

Let’s consider for k = 1, 2, 3 the Ramanujan (or Eisenstein) series Ek ,
the Taylor expansion of which is

Ek(z) = 1 + γk.
∑

i≥1

σ2k−1(i)zi

with σk(i) :=
∑

%|i +
k , γ1 = −24 , γ2 = 240 , γ3 = −504 . We know the

upper bound σk(i) ≤ ζ(k).ik for k > 1 (cf. [50] , chap.7, §4.3). Therefore
σ1(i) ≤ σ3(i) ≤ σ5(i) ≤ ζ(5).i5 and the series above define analytic functions
in the (open) unit disc in C (or in its p -adic analogue Cp ).

The modular invariant J(z) is defined by

(8) J(z) = 1728.
E2(z)3

E2(z)3 − E3(z)2
=

1
z

+ 744 + O(z) .

It satisfies a functional equation of type (3), more precisely for any integer
n > 1 there exists an irreducible polynomial Φn ∈ Z[X, Y ] , called the
modular polynomial of order n , such that

(9) Φn(J(zn), J(z)) = 0 .

The modular polynomial Φn is symmetric in X, Y , its degree in each vari-
able is equal to n

∏
p|n

p+1
p and its length (sum of the absolute values of

its coefficients) is bounded above by exp
(
Cn log(n)

∏
p|n

p+1
p

)
, where the
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products run over all the primes p dividing n and C > 0 is a real inde-
pendent of n (any C > 6 would do for n large enough), see [16].

Trying to apply theorem 2 with t(z) = zn and E(X, Y, Z) = Φn(X, Y ) ,
we check that condition (4) is not fulfilled since degX(E) > n .

However, K.Barré-Siriex, G.Diaz, F.Gramain and G.Philibert [5] suc-
ceeded to overcome this difficulty and proved that for α ∈ C (resp. α ∈
Cp ), 0 < |α| < 1 , at least one of the numbers α or J(α) must be tran-
scendental over Q , solving the so-called Mahler-Manin conjecture. This
approach dates back to 1972, when it was clarified by D.Bertrand, see [12,
13, 14].

Later on the method was extended in order to prove algebraic inde-
pendence results, thanks to the crucial zero estimate for Ramanujan series
proved by Y.Nesterenko.

Theorem 10 (Y.Nesterenko [34]) 10. Let α ∈ C (or Cp ) with
0 < |α| < 1 , then at least three of the four numbers α,E1(α), E2(α), E3(α)
are algebraically independent over Q .

Thanks to relation (8) one recovers easily the results of K.Barré-Siriex,
G.Diaz, F.Gramain and G.Philibert [5].

This result answered several conjectures in [13] (see also [14] for other
applications), where one can find equivalent formulations. In particular, for
the modular invariant J and its iterated derivates through the Ramanujan
derivation Θ = z d

dz , one has

J = 1728.
E3

2

E3
2 − E2

3

,
ΘJ

J
= −E3

E2
, 6.

Θ2J

ΘJ
= E1 − 4.

E3

E2
− 3.

E2
2

E3
.

Recall that the Dedekind η function is defined by the infinite product
η(z) = z

1
24

∏
k∈N∗(1− zk) and satisfies 1728η(z)24 = E2(z)3 − E3(z)2 and

24Θη(z)
η(z) = E1(z) .

We will say that two families of functions (resp. numbers) resp. alge-
braically equivalent over Q if the algebraic closure of the field they generate
over Q coincide. The above formulas show that (E1(z), E2(z), E3(z)) and
(J(z),ΘJ(z),Θ2J(z)) are triples of functions algebraically equivalent over
Q . We can substitute any triple of functions algebraically equivalent to
(E1(z), E2(z), E3(z)) in Theorem 10 and keep the same conclusion.

Since J(zn) and J(z) are algebraically equivalent over Q by for-
mula (9), the algebraic closures of the fields Q(J(zn)) and Q(J(z)) co-
incide for any integer n ≥ 1 , denote it F . By derivation we deduce
from (9) that F (ΘJ(zn),Θ2J(zn)) = F (ΘJ(z),Θ2J(z)) , hence the triples
of functions (J(zn),ΘJ(zn),Θ2J(zn)) and (J(z),ΘJ(z),Θ2J(z)) are alge-
braically equivalent over Q . But, since (J(zn),ΘJ(zn),Θ2J(zn)) is alge-
braically equivalent over Q to the triple (E1(zn), E2(zn), E3(zn)) for any
integer n ≥ 1 we further get that the triples (E1(zn), E2(zn), E3(zn)) and
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(E1(z), E2(z), E3(z)) are algebraically equivalent over Q . In particular,
the algebraic closure of the field generated over Q by the functions E1(z) ,
E2(z) and E3(z) is stable under all the transformations z $→ zn , n ∈ N∗ ,
of the variable z .

The Ramanujan series also satisfies the system of Ramanujan differential
equations

ΘE1 =
1
12

.(E2
1 −E2) , ΘE2 =

1
3
(E1E2 −E3) , ΘE3 =

1
2
(E1E3 −E2

2) ,

which shows that the field generated over Q by the functions E1(z) , E2(z)
and E3(z) is stable under the Ramanujan derivation. The same holds for
its algebraic closure.

We will see that Theorem 10 implies the transcendence of various num-
bers related to linear recurrence sequences, for example. Many of these
corollaries can be obtained with the following one.

Corollary (D.Duverney, Ke. & Ku.Nishioka, I.Shiokawa [18])
11. Let α an algebraic number in C or Cp satisfying 0 < |α| < 1 , then
for any non constant function f(z) which is algebraic over the function field
Q(E1(z), E2(z), E3(z)) and defined at α , the value f(α) is transcendental.

More generally, if f1(z), . . . , fm(z) are algebraic over the function field
Q(E1(z), E2(z), E3(z)) and defined at α , then the ideal of relations between
the functions fi(z) , i = 1, . . . ,m , coincide with that of relations between
their values fi(α) , i = 1, . . . ,m .

Proof – Since f(z) is not constant its monic minimal equation over the func-
tion field Q(E1(z), E2(z), E3(z)) is an irreducible polynomial depending on
at least one of the functions Ei(z) , this implies that f(z) is a transcenden-
tal function.

Now, the values E1(α), E2(α), E3(α) are algebraically independent over
Q by Theorem 10, hence the specialisation at α of the monic minimal equa-
tion of f(z) over Q(E1(z), E2(z), E3(z)) is the monic minimal equation of
f(α) over Q(E1(α), E2(α), E3(α)) . It also depends on at least one of the
numbers Ei(z) and this implies that f(α) is transcendental over Q .

More generally, let I ⊂ Q[X1, X2, X3, Y1 . . . , Ym] be the prime ideal of
relations between the functions E1(z) , E2(z) , E3(z) and f1(z), . . . , fm(z) ,
by the hypothesis it is of rank m . If there exists a polynomial relation over
Q between f1(α), . . . , fm(α) which does not belong to I ∩Q[Y1, . . . , Ym] ,
adding this polynomial to I gives an ideal of rank higher than m which
must therefore contain a non zero element in Q[X1, X2, X3] , but this would
lead to a non trivial algebraic relation between E1(α), E2(α), E3(α) over Q
contrary to Theorem 10.
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For example, introduce the Jacobi theta functions [57, Chap.XXI]

θ1(u, z) = 2z1/4
∑

k≥1

(−1)k+1zk(k−1) sin((2k − 1)u)

= 2z1/4 sin(u)
∏

k≥1

(1− z2k)(1− 2z2k cos(2u) + z4k)

θ2(u, z) = 2z1/4
∑

k≥1

zk(k−1) cos((2k − 1)u)

= 2z1/4 cos(u)
∏

k≥1

(1− z2k)(1 + 2z2k cos(2u) + z4k)

θ3(u, z) = 1 + 2
∑

k≥1

zk2
cos(2ku)

=
∏

k≥1

(1− z2k)(1 + 2z2k−1 cos(2u) + z4k−2)

θ4(u, z) = 1 + 2
∑

k≥1

(−1)kzk2
cos(2ku)

=
∏

k≥1

(1− z2k)(1− 2z2k−1 cos(2u) + z4k−2) .

Writing z = eiπτ , these theta functions have period π and quasi-period πτ
in the variable u : θ4(u+πτ, z) = −z−1e−2izθ4(u, z) . Their zero argument
theta values θi(0, z) , i = 1, 2, 3, 4 , satisfy the relations

θ1(0, z) = 0 , θ2(0, z)4 + θ4(0, z)4 = θ3(0, z)4

and furthermore
E2(z2)3 − E3(z2)2 = 27

4 (θ2(0, z)θ3(0, z)θ4(0, z))8

E2(z2) = 1
2

(
θ2(0, z)8 + θ3(0, z)8 + θ4(0, z)8

)

which show that the functions θi(0, z)8 , i = 2, 3, 4 , are the roots of the
equation

X3 − 2E2(z2)X2 + E2(z2)2X − 4
27

(E2(z2)3 − E3(z2)2) = 0 ,

hence belong to the algebraic closure of the field generated over Q by the
functions E1(z) , E2(z) and E3(z) . Applying power transformations of
the variable and Ramanujan derivation we conclude that all the following
functions

Θ%Ei(zn) , Θ%θi+1(0, zn) , Θ%J(zn) , i = 1, 2, 3 , n ∈ N∗ , + ∈ N

are algebraic over the field Q(E1(z), E2(z), E3(z)) , since this latter field is
stable under these operations. The same formulas show that E2(z2) and
E3(z2) are algebraic over Q(θi(0, z), θj(0, z)) for any 2 ≤ i )= j ≤ 4 .
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The zero argument theta values θi(0, z) satisfy the following differential
equations

(10) 12
Θθ2

θ2
− θ4

3 − θ4
4 = 12

Θθ3

θ3
− θ4

2 + θ4
4 = 12

Θθ4

θ4
+ θ4

2 + θ4
3 = E1(z2) ,

which show that E1(z2) is algebraic over Q(Θθh(0, z), θi(0, z), θj(0, z)) for
any 2 ≤ h ≤ 4 and 2 ≤ i )= j ≤ 4 . Therefore each triple of func-
tions (Θθh(0, z), θi(0, z), θj(0, z)) is algebraically equivalent to the triples
(E1(z2), E2(z2), E3(z2)) and (E1(z), E2(z), E3(z)) .

Now, for s any permutation of {2, 3, 4} the quadratic equation

X2 − θ4
s(4)(0, z)X + 8

(
Θ2θs(4)(0, z)
θs(4)(0, z)

− 3
(Θθs(4)(0, z)

θs(4)(0, z)

)2
)

= 0

has roots (−1)s(2)θs(3)(0, z) and (−1)s(3)θs(2)(0, z) . This shows that the
triples (θs(2)(0, z), θs(3)(0, z),Θs(4)(0, z)) and (E1(z), E2(z), E3(z)) are al-
gebraically equivalent to the triple (θh(0, z),Θθh(0, z),Θ2θh(0, z)) for any
h ∈ {2, 3, 4} .

Exercises 6. 1) Prove that for any permutation s of {2, 3, 4} one has

8

(
Θ2θs(4)(0, z)
θs(4)(0, z)

− 3
(Θθs(4)(0, z)

θs(4)(0, z)

)2
)

= (−1)s(2)+s(3)θs(2)(0, z)θs(3)(0, z) .

2) Prove that the triple of functions (η(z),Θη(z),Θ2η(z)) is algebraic-
ally equivalent over Q to the triple of functions (E1(z), E2(z), E3(z)) .

3) Prove the same for the triple of functions
(

Θθ2(0,z)
θ2(0,z) , Θθ3(0,z)

θ3(0,z) , Θθ4(0,z)
θ4(0,z)

)
.

We end this section with a conjecture proposed by D.Bertrand :

Conjecture (D.Bertrand [14]) 12. Let α1, . . . , αn be algebraic num-
bers satisfying 0 < |αi| < 1 , i = 1, . . . , n , such that the 3n numbers
J(αi) , ΘJ(αi) , Θ2J(αi) , i = 1, . . . , n , are algebraically dependent over
Q . Then there exists 1 ≤ i )= j ≤ n such that αi and αj are multiplica-
tively dependent.


