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Introduction 1. Loop space indices 2. A sigma model interpretation 3. The elliptic genus of K3 4. Some conjectures

Motivation: The Atiyah-Singer Index Theorem

Atiyah-Singer Index Theorem and McKean-Singer Formula
For M: a compact oriented 2D-dimensional spin manifold,

W −→ M: a vector bundle with associated Dirac operator /D,∫
M

Â(M)ch(W ) = ind( /D) = sTr
(
e−t /D

2
)
,

where:
Â(M) = det1/2

(
R/2

sinh(R/2)

)
is the A-roof-genus, R ∈ A2(M, so(TM))

the Riemannian curvature wrt some metric, and ch(W ) is the Chern
character ch(W ) = sTr(exp(−F W )), F W the curvature of W .

M: a Calabi-Yau D-fold,
T := T 1,0M the holomorphic tangent bundle of M, E −→ M a holomorphic bundle,

=⇒ holomorphic Euler characteristic: χ(E) =
R

M Td(M) ch(E)

with Td(M) = det
“

R+

1−e−R+

”
the Todd class, R+ the holomorphic curvature of T
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The elliptic genus EM of M [Hirzebruch88,Witten88]

EM(τ, z): weight 0 weak Jacobi form in τ, z ∈ C (Im(τ)>0, q=e2πiτ ),

EM(τ, z = 0) = χ(M)

EM(τ, z = 1
2 ) = (−1)D/2σ(M) +O(q),

qD/4EM(τ, z = τ+1
2 ) = (−1)D/2χ(OM) +O(q)

EM(τ, z) is a regularization of an equiv. index on LM = C 0(S1,M).

[Landweber-Stong88,Ochanine88;Zagier88,Taubes89]
with T = T 1,0M the holomorphic tangent bundle (y = e2πiz):∫

M
Td(M) ch(Eq,−y ) = EM(τ, z)

= sTrHR

(
yJ0qL0−D/8qL0−D/8

)
,

Eq,−y :=y−D/2
∞N

n=1
[Λ−yqn−1T∗⊗Λ−y−1qnT⊗SqnT∗⊗SqnT ],

ΛxE=
∞L

p=0
xpΛpE , SxE=

∞L
p=0

xpSpE ,

ch(ΛxE)=
∞P

p=0
xp ch(ΛpE), ch(SxE)=

∞P
p=0

xp ch(SpE)
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The elliptic genus EM of M [Hirzebruch88,Witten88]

EM(τ, z): weight 0 weak Jacobi form in τ, z ∈ C (Im(τ)>0, q=e2πiτ ),

EM(τ, z = 0) = χ(M)

EM(τ, z = 1
2 ) = (−1)D/2σ(M) +O(q),

qD/4EM(τ, z = τ+1
2 ) = (−1)D/2χ(OM) +O(q)

EM(τ, z) is a regularization of an equiv. index on LM = C 0(S1,M).

[Zagier88,Taubes89,Eguchi/Ooguri/Taormina/Yang89]
with T = T 1,0M the holomorphic tangent bundle (y = e2πiz):∫

M
Td(M) ch(Eq,−y ) = EM(τ, z) = sTrHR

(
yJ0qL0−D/8qL0−D/8

)
,

Eq,−y :=y−D/2
∞N

n=1
[Λ−yqn−1T∗⊗Λ−y−1qnT⊗SqnT∗⊗SqnT ],

HR : Ramond sector of any superconformal field theory associated to M,

J0, L0, L0: zero modes of the U(1)-current and Virasoro fields in the SCA
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1. From indices to U(1)-equivariant loop space indices

[Hirzebruch78] with c(T ) =
D∏

j=1
(1 + xj ) (splitting principle):

χy (M) :=
∑
p,q

(−1)qyphp,q

=
∑
p

yp
∑
q

(−1)q dim Hq(M,ΛpT ∗)

=
∑
p

ypχ(ΛpT ∗) =

∫
M

Td(M)
∑
p

yp ch(ΛpT ∗)

=

∫
M

Td(M) ch(ΛyT
∗) =

∫
M

D∏
j=1

xj
1+ye

−xj

1−e
−xj

Let LM = C 0(S1,M),
q: a topological generator of S1; LMS1

= M ↪→ LM (constant loops),
so for p ∈ M: Tp(LM) = L(TpM) = TpM ⊕N, N =

⊕
n∈Z\{0}

qnTpM,

where qnTpM ∼= TpM: the eigenspace of q∗with eigenvalue qn,n ∈ Z,

χy (q,LM) :=

∫
M

D∏
j=1

{
xj

1+ye
−xj

1−e
−xj

∞∏
n=1

[
1+qnye

−xj

1−qne
−xj
· 1+qny−1e

xj

1−qne
xj

]
(−y)ζ(0)

}
=

∫
M

Td(M) ch(Eq,y )

Eq,y =(−y)−D/2ΛyT∗⊗
∞N

n=1
[ΛyqnT∗⊗Λy−1qnT⊗SqnT∗⊗SqnT ]
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Definition of the elliptic genus

Theorem [Hirzebruch88,Witten88,Krichever90,
Borisov/Libgober00]

The elliptic genus

EM(τ, z) :=

∫
M

Td(M) ch(Eq,−y ) (q=e2πiτ , y=e2πiz)

of a Calabi-Yau D-fold M is a weak Jacobi form
of weight 0 and index D

2 .
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Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]
Ωch

M : sheaf of vertex algebras over M
sections over U ⊂ M with holomorphic coordinates z1, . . . , zD :
vertex algebra generated by fields φj , pj , ψj , ρj , j ∈ {1, . . . ,D},

where φj ↔ zj , pj ↔ ∂
∂zj

, ψj ↔ dzj , ρj ↔ ∂
∂(dzj )

φj , pj , ψj , ρj ∈ End(H)[[x , x−1]] with

∀ i , j ,m, n : φj (x) =
P
n
φj

nx−n, pj (x) =
P
n

pj,nx−n−1,

ψj (x) =
P
n
ψj

nx−n, ρj (x) =
P
n
ρj,nx−n−1,

where
ˆ
φi

n, pj,m

˜
= δi

j δn,−m,
˘
ψi

n, ρj,m

¯
= δi

j δn,−m ∀m, n ∈ Z;

H: the Fock space built on |0〉 from φj
n, pj,m, ψ

j
n, ρj,m, n, m ∈ Z,

with φj
n|0〉 = ψj

n|0〉 = 0 ∀ n > 0 and pj,m|0〉 = ρj,m|0〉 = 0 ∀m ≥ 0
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Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]
Ωch

M : sheaf of vertex algebras over M
sections over U ⊂ M with holomorphic coordinates z1, . . . , zD :
vertex algebra generated by fields φj , pj , ψj , ρj , j ∈ {1, . . . ,D},

where φj ↔ zj , pj ↔ ∂
∂zj

, ψj ↔ dzj , ρj ↔ ∂
∂(dzj )

Theorem [Malikov/Schechtman/Vaintrob99;Borisov/Libgober00]
There are globally well-defined fields on M,

Ltop = − :pj∂φ
j:− :ρj∂ψ

j:, J = :ρjψ
j:,Q = − :ψjpj:, G = :ρj∂φ

j:,

which yield a (topological) N = 2 superconformal algebra.
The elliptic genus EM(τ, z) is the bigraded Euler characteristic of Ωch

M ,
and H∗(M,Ωch

M ) is a topological N = 2 superconformal vertex algebra.
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. . . and topologically half twisted sigma model

Theorem [Kapustin05]

There is a fine resolution Ωch,Dol
M of Ωch

M obtained by introducing
variables φ, ψ,

where ψ determines the grading and dDol := ψ ∂
∂φ

,
such that

EM(τ, z) =sTr
H∗(Ωch,Dol

M )

(
yJ0−D/2qLtop

0

)
.

The dDol -cohomology H∗(Ωch,Dol
M ) is the large volume limit of the

BRST-cohomology HBRST
NS of Witten’s half-twisted σ-model on M.

Conclusion:

EM(τ, z)

spectral
flow
= sTrHBRST

R

(
yJ0qL0−D/8

)
= sTrHR

(
yJ0qL0−D/8qL0−D/8

)
= ECFT (τ, z).
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3. The elliptic genus of K3

For every K3 surface M,

EK3(τ, z) = 8
(
ϑ2(τ,z)
ϑ2(τ,0)

)2
+ 8

(
ϑ3(τ,z)
ϑ3(τ,0)

)2
+ 8

(
ϑ4(τ,z)
ϑ4(τ,0)

)2
.

For every N = (2, 2) SCFT at central charges c = c = 6 with
space-time SUSY and integral U(1) charges:
The theory has N = (4, 4) SUSY, and its CFT elliptic genus either
vanishes, or it agrees with EK3(τ, z).

Definition (K3 theory):
An N = (2, 2) SCFT at c = c = 6 with space-time SUSY,
integral U(1) charges and CFT elliptic genus EK3(τ, z).
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Decomposition into irreducible N = 4 characters

3 types of N = 4 irreps H• with χ•(τ, z) = sTrH•
(
yJ0qL0−1/4

)
:

• vacuum H0 with χ0(τ, 0) = −2

• massless matter H1/2 with χ1/2(τ, 0) = 1

• massive matter Hh (h ∈ R>0), χh(τ, z) = qhχ̃(τ, z), χh(τ, 0) = 0

Ansatz: HR = H0 ⊗H0 ⊕ 20 H1/2 ⊗H1/2

⊕
`L

0<n∈N
ˆ
fnHn ⊗H0 ⊕ fnH0 ⊗Hn

˜´
⊕
`L

0<m∈N
ˆ
gmHm ⊗H1/2 ⊕ gmH1/2 ⊗Hm

˜´
⊕
L

0<h,h∈R kh,hHh ⊗Hh

where all fn, f n, gm, gm, kh,h are non-negative integers.

=⇒
EK3(τ, z) = −2χ0(τ, z) + 20χ1/2(τ, z) + 2e(τ)χ̃(τ, z),

2e(τ) =
∞∑

n=1
(gn − 2fn)qn

Conjecture [Ooguri89,W00]
gn − 2fn ≥ 0 for all n ∈ N proved in [Eguchi/Hikami09].
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4. Some conjectures

Conjecture [Eguchi/Ooguri/Tachikawa10]
For all n, gn−2fn gives the dimension of a non-trivial representation
of the Mathieu group M24.
Proved in [Gannon12], using results of Cheng, Duncan, Gab-
erdiel, Hohenegger, Persson, Ronellenfitsch, Volpato.

WHY?

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkähler structure of M,

then G is isomorphic to a subgroup of the Mathieu group M24,
and |G | ≤ 960� 244.823.040 = |M24|.

Katrin Wendland The elliptic genus of K3 and CFT 10/12
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4. Some conjectures
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There exists a representation Rn of M24 for every n ∈ N, such
that

lim
vol→∞

(HBRST
R ) ∼= (−2)H0 ⊕ 20 H1/2 ⊕

∞⊕
n=1

(Rn ⊕Rn)⊗Hn

as a representation of M24 and of the N=4 superconformal algebra.

WHY?

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkähler structure of M,

then G is isomorphic to a subgroup of the Mathieu group M24,
and |G | ≤ 960� 244.823.040 = |M24|.

Katrin Wendland The elliptic genus of K3 and CFT 10/12



Introduction 1. Loop space indices 2. A sigma model interpretation 3. The elliptic genus of K3 4. Some conjectures

4. Some conjectures

Theorem [Eguchi/Ooguri/Tachikawa10,Gannon12]
There exists a representation Rn of M24 for every n ∈ N, such
that

lim
vol→∞

(HBRST
R ) ∼= (−2)H0 ⊕ 20 H1/2 ⊕

∞⊕
n=1

(Rn ⊕Rn)⊗Hn

as a representation of M24 and of the N=4 superconformal algebra.

WHY?

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkähler structure of M,

then G is isomorphic to a subgroup of the Mathieu group M24,
and |G | ≤ 960� 244.823.040 = |M24|.

Katrin Wendland The elliptic genus of K3 and CFT 10/12



Introduction 1. Loop space indices 2. A sigma model interpretation 3. The elliptic genus of K3 4. Some conjectures

4. Some conjectures

Theorem [Eguchi/Ooguri/Tachikawa10,Gannon12]
There exists a representation Rn of M24 for every n ∈ N, such
that

lim
vol→∞

(HBRST
R ) ∼= (−2)H0 ⊕ 20 H1/2 ⊕

∞⊕
n=1

(Rn ⊕Rn)⊗Hn

as a representation of M24 and of the N=4 superconformal algebra.

WHY?

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkähler structure of M,

then G is isomorphic to a subgroup of the Mathieu group M24,
and |G | ≤ 960� 244.823.040 = |M24|.

Katrin Wendland The elliptic genus of K3 and CFT 10/12



Introduction 1. Loop space indices 2. A sigma model interpretation 3. The elliptic genus of K3 4. Some conjectures

Some open conjectures

Observation [Taormina/W10-13]
The map HR � lim

vol→∞
(HBRST

R ) depends on the choice of a geomet-

ric interpretation; so: restrict to geometric symmetry groups.

Conjecture [Taormina/W10-13]
In every geometric interpretation,

lim
vol→∞

(HBRST
R ) ∼= (−2)H0 ⊕ R1/2⊗H1/2 ⊕

∞⊕
n=1

(Rn ⊕Rn)⊗Hn

as a representation of the geometric symmetry group G ⊂ M24; the
rhs collects the symmetries from distinct points of the moduli space.

Evidence [Taormina/W13]
R1 as common representation space of all geometric symmetry
groups of Kummer K3s yields an action of the maximal subgroup
Z4

2 o A8 ⊂ M24 induced from an irrep of M24 on R1.
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A simpler open conjecture

Recall:

EK3(τ, z) =

∫
K3

Td(K3)ch(Eq,−y )

= −2χ0(τ, z) + 20χ1/2(τ, z) +
∞∑

n=1

(gn − 2fn)χn(τ, z)

Conjecture [W13]
There are polynomials pn for every n ∈ N, such that

Eq,−y = −OK3χ0(τ, z)− Tχ1/2(τ, z) +
∞∑

n=1

pn(T )χn(τ, z),

where 2 dim(Rn) = gn − 2fn =
∫

K3 Td(K3)pn(T ) for all n ∈ N.
Moreover, pn(T ) � Rn ⊕ Rn carries a natural action of every
geometric symmetry group G ⊂ M24 of K3.
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The End

Thank you
for your attention!
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