The elliptic genus of K3 and CFT

International Workshop "Mock Modular Forms and Physics"
IMSc, Chennai, India, April 14-18, 2014

Katrin Wendland

Albert-Ludwigs-Universität Freiburg

[Taormina/W11] The overarching finite symmetry group of Kummer surfaces in the Mathieu group M_{24},
JHEP 1308:152 (2013); arXiv:1107.3834 [hep-th]
[Taormina/W12] A twist in the M_{24} moonshine story; arXiv:1303.3221 [hep-th]
[Taormina/W13] Symmetry-surfing the moduli space of Kummer K3s; arXiv:1303.2931 [hep-th]
[W14] Snapshots of conformal field theory; arXiv:1404.3108 [hep-th];
to appear in "Mathematical Aspects of Quantum Field Theories", Mathematical Physics Studies, Springer

Motivation: The Atiyah-Singer Index Theorem

Atiyah-Singer Index Theorem and McKean-Singer Formula

For M : a compact oriented 2D-dimensional spin manifold, $W \longrightarrow M$: a vector bundle with associated Dirac operator \emptyset,

$$
\int_{M} \widehat{A}(M) \operatorname{ch}(W)=\operatorname{ind}(\not D)=\operatorname{sTr}\left(e^{-t \not D^{2}}\right)
$$

where:
$\widehat{A}(M)=\operatorname{det}^{1 / 2}\left(\frac{R / 2}{\sinh (R / 2)}\right)$ is the A-roof-genus, $R \in \mathcal{A}^{2}(M, \mathfrak{s o}(T M))$ the Riemannian curvature wrt some metric, and $\operatorname{ch}(W)$ is the Chern character $\operatorname{ch}(W)=\operatorname{sTr}\left(\exp \left(-F^{W}\right)\right), F^{W}$ the curvature of W.

Motivation: The Atiyah-Singer Index Theorem

Atiyah-Singer Index Theorem and McKean-Singer Formula

For M : a compact oriented 2D-dimensional spin manifold, $W \longrightarrow M$: a vector bundle with associated Dirac operator D,

$$
\int_{M} \widehat{A}(M) \operatorname{ch}(W)=\operatorname{ind}(\not D)=\operatorname{sTr}\left(e^{-t \not D^{2}}\right)
$$

where:
$\widehat{A}(M)=\operatorname{det}^{1 / 2}\left(\frac{R / 2}{\sinh (R / 2)}\right)$ is the A-roof-genus, $R \in \mathcal{A}^{2}(M, \mathfrak{s o}(T M))$ the Riemannian curvature wrt some metric, and $\operatorname{ch}(W)$ is the Chern character $\operatorname{ch}(W)=\operatorname{sir}\left(\exp \left(-F^{W}\right)\right), F^{W}$ the curvature of W.

M: a Calabi-Yau D-fold,
$T:=T^{1,0} M$ the holomorphic tangent bundle of $M, E \longrightarrow M$ a holomorphic bundle, \Longrightarrow holomorphic Euler characteristic: $\chi(E)=\int_{M} \operatorname{Td}(M) \operatorname{ch}(E)$ with $\operatorname{Td}(M)=\operatorname{det}\left(\frac{R^{+}}{1-e^{-R^{+}}}\right)$the Todd class, R^{+}the holomorphic curvature of T

The elliptic genus \mathcal{E}_{M} of M [Hirzebruch88,Witten88]

$\mathcal{E}_{M}(\tau, z)$: weight 0 weak Jacobi form in $\tau, z \in \mathbb{C}\left(\operatorname{Im}(\tau)>0, q=e^{2 \pi i \tau}\right)$,

$$
\begin{aligned}
\mathcal{E}_{M}(\tau, z=0) & =\chi(M) \\
\mathcal{E}_{M}\left(\tau, z=\frac{1}{2}\right) & =(-1)^{D / 2} \sigma(M)+\mathcal{O}(q), \\
q^{D / 4} \mathcal{E}_{M}\left(\tau, z=\frac{\tau+1}{2}\right) & =(-1)^{D / 2} \chi\left(\mathcal{O}_{M}\right)+\mathcal{O}(q)
\end{aligned}
$$

$\mathcal{E}_{M}(\tau, z)$ is a regularization of an equiv. index on $\mathcal{L} M=C^{0}\left(\mathbb{S}^{1}, M\right)$.

[Landweber-Stong88,Ochanine88;Zagier88,Taubes89]

 with $T=T^{1,0} M$ the holomorphic tangent bundle $\left(y=e^{2 \pi i z}\right)$:$\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\mathbb{E}_{q,-y}\right)=\mathcal{E}_{M}(\tau, z)$

$$
\begin{aligned}
& \mathbb{E}_{q,-y}:=y-D / 2 \bigotimes_{n=1}^{\infty}\left[\Lambda_{-y q^{n-1}} T^{*} \otimes \Lambda_{-y^{-1} q^{n}} T \otimes S_{q^{n}} T^{*} \otimes S_{q^{n}} T\right] \text {, } \\
& \Lambda_{\star} E=\bigoplus_{p=0}^{\infty} x^{p} \wedge^{p} E, \quad S_{x} E=\bigoplus_{p=0}^{\infty} x^{p} S^{p} E, \\
& \operatorname{ch}\left(\Lambda_{x} E\right)=\sum_{p=0}^{\infty} x^{p} \operatorname{ch}\left(\wedge^{\rho} E\right), \quad \operatorname{ch}\left(S_{x} E\right)=\sum_{p=0}^{\infty} x^{p} \operatorname{ch}\left(S^{p} E\right)
\end{aligned}
$$

The elliptic genus \mathcal{E}_{M} of M [Hirzebruch88,Witten88]

$\mathcal{E}_{M}(\tau, z)$: weight 0 weak Jacobi form in $\tau, z \in \mathbb{C}\left(\operatorname{Im}(\tau)>0, q=e^{2 \pi i \tau}\right)$,

$$
\begin{aligned}
\mathcal{E}_{M}(\tau, z=0) & =\chi(M) \\
\mathcal{E}_{M}\left(\tau, z=\frac{1}{2}\right) & =(-1)^{D / 2} \sigma(M)+\mathcal{O}(q), \\
q^{D / 4} \mathcal{E}_{M}\left(\tau, z=\frac{\tau+1}{2}\right) & =(-1)^{D / 2} \chi\left(\mathcal{O}_{M}\right)+\mathcal{O}(q)
\end{aligned}
$$

$\mathcal{E}_{M}(\tau, z)$ is a regularization of an equiv. index on $\mathcal{L} M=C^{0}\left(\mathbb{S}^{1}, M\right)$.
[Zagier88,Taubes89,Eguchi/Ooguri/Taormina/Yang89] with $T=T^{1,0} M$ the holomorphic tangent bundle $\left(y=e^{2 \pi i z}\right)$: $\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\mathbb{E}_{q,-y}\right)=\mathcal{E}_{M}(\tau, z)=\operatorname{sir}_{\mathcal{H}_{R}}\left(y^{J_{0}} q^{L_{0}-D / 8} \bar{q}^{\bar{L}_{0}-D / 8}\right)$, $\mathbb{E}_{q,-y}:=y^{-D / 2} \bigotimes_{n=1}^{\infty}\left[\Lambda_{-y q^{n-1}} T^{*} \otimes \Lambda_{-y^{-1} q^{n}} T \otimes S_{q^{n}} T^{*} \otimes S_{q^{n}} T\right]$,
\mathcal{H}_{R} : Ramond sector of any superconformal field theory associated to M, $J_{0}, L_{0}, \bar{L}_{0}$: zero modes of the $U(1)$-current and Virasoro fields in the SCA

The elliptic genus of K3

Introduction
(1) From indices to $U(1)$-equivariant loop space indices
(2) A sigma model interpretation
(3) The elliptic genus of K3
(4) Some conjectures

1. From indices to $U(1)$-equivariant loop space indices

[Hirzebruch78] with $c(T)=\prod_{j=1}^{D}\left(1+x_{j}\right)$ (splitting principle):

$$
\begin{aligned}
\chi_{y}(M) & :=\sum_{p, q}(-1)^{q} y^{p} h^{p, q} \\
& =\sum_{p} y^{p} \sum_{q}(-1)^{q} \operatorname{dim} H^{q}\left(M, \Lambda^{p} T^{*}\right) \\
& =\sum_{p} y^{p} \chi\left(\Lambda^{p} T^{*}\right) \quad=\int_{M} \operatorname{Td}(M) \sum_{p} y^{p} \operatorname{ch}\left(\Lambda^{\rho} T^{*}\right) \\
& =\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\Lambda y T^{*}\right)=\int_{M} \prod_{j=1}^{D} x_{j} \frac{1+y e^{-x_{j}}}{1-e^{-x_{j}}}
\end{aligned}
$$

1. From indices to $U(1)$-equivariant loop space indices

[Hirzebruch78] with $c(T)=\prod_{j=1}^{D}\left(1+x_{j}\right)$ (splitting principle):

$$
\chi_{y}(M):=\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\Lambda_{y} T^{*}\right)=\int_{M} \prod_{j=1}^{D} x_{j} \frac{1+y e^{-x_{j}}}{1-e^{-x_{j}}}
$$

Let $\mathcal{L} M=C^{0}\left(\mathbb{S}^{1}, M\right)$,
q : a topological generator of $\mathbb{S}^{1} ; \mathcal{L} M^{\mathbb{S}^{1}}=M \hookrightarrow \mathcal{L} M$ (constant loops), so for $p \in M: \quad T_{p}(\mathcal{L} M)=\mathcal{L}\left(T_{p} M\right)=T_{p} M \oplus \mathcal{N}, \mathcal{N}=\bigoplus_{n \in \mathbb{Z} \backslash\{0\}} q^{n} T_{p} M$, where $q^{n} T_{p} M \cong T_{p} M$: the eigenspace of q_{*} with eigenvalue $q^{n}, n \in \mathbb{Z}$,

$$
\begin{aligned}
& \chi_{y}(q, \mathcal{L} M):= \int_{M} \prod_{j=1}^{D}\left\{x_{j} \frac{1+y e^{-x_{j}}}{1-e^{-x_{j}}} \prod_{n=1}^{\infty}\left[\frac{1+q^{n} y e^{-x_{j}}}{1-q^{n} e^{-x_{j}}} \cdot \frac{1+q^{n} y^{-1} e^{x_{j}}}{1-q^{n} e^{x_{j}}}\right](-y)^{\zeta(0)}\right\} \\
&= \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\mathbb{E}_{q, y}\right) \\
& \mathbb{E}_{q, y}=(-y)^{-D / 2} \Lambda_{y} T^{*} \otimes \bigotimes_{n=1}^{\infty}\left[\Lambda_{y q^{n}} T^{*} \otimes \Lambda_{y-1} q^{n} T \otimes S_{q^{n}} T^{*} \otimes S_{q^{n}} T\right]
\end{aligned}
$$

Definition of the elliptic genus

Theorem [Hirzebruch88,Witten88,Krichever90,

 Borisov/Libgober00]The elliptic genus

$$
\mathcal{E}_{M}(\tau, z):=\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\mathbb{E}_{q,-y}\right) \quad\left(q=e^{2 \pi i \tau}, y=e^{2 \pi i z}\right)
$$

of a Calabi-Yau D-fold M is a weak Jacobi form of weight 0 and index $\frac{D}{2}$.

Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]

$\Omega_{M}^{c h}$:
sheaf of vertex algebras over M
sections over $U \subset M$ with holomorphic coordinates z_{1}, \ldots, z_{D} : vertex algebra generated by fields $\phi^{j}, p^{j}, \psi_{j}, \rho_{j}, j \in\{1, \ldots, D\}$, where $\phi^{j} \leftrightarrow z_{j}, p_{j} \leftrightarrow \frac{\partial}{\partial z_{j}}, \psi^{j} \leftrightarrow d z_{j}, \rho_{j} \leftrightarrow \frac{\partial}{\partial\left(d z_{j}\right)}$

$$
\begin{aligned}
& \phi^{j}, p^{j}, \psi_{j}, \rho_{j} \in \operatorname{End}(\mathcal{H})\left[\left[x, x^{-1}\right]\right. \text { with } \\
& \forall i, j, m, n: \quad \phi^{j}(x)=\sum_{n} \phi_{n}^{j} x^{-n}, \quad p^{j}(x)=\sum_{n} p_{j, n} x^{-n-1}, \\
& \psi^{j}(x)=\sum_{n} \psi_{n}^{j} x^{-n}, \quad \rho_{j}(x)=\sum_{n}^{n} \rho_{j, n} x^{-n-1}, \\
& \text { where }\left[\phi_{n}^{i}, p_{j, m}\right]=\delta_{j}^{i} \delta_{n,-m},\left\{\psi_{n}^{i}, \rho_{j, m}\right\}=\delta_{j}^{i} \delta_{n,-m} \forall m, n \in \mathbb{Z} ;
\end{aligned}
$$

\mathcal{H} : the Fock space built on $|0\rangle$ from $\phi_{n}^{j}, p_{j, m}, \psi_{n}^{j}, \rho_{j, m}, n, m \in \mathbb{Z}$,

$$
\text { with } \phi_{n}^{j}|0\rangle=\psi_{n}^{j}|0\rangle=0 \forall n>0 \text { and } p_{j, m}|0\rangle=\rho_{j, m}|0\rangle=0 \forall m \geq 0
$$

Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]

$\Omega_{M}^{c h}$:
sheaf of vertex algebras over M
sections over $U \subset M$ with holomorphic coordinates z_{1}, \ldots, z_{D} : vertex algebra generated by fields $\phi^{j}, p^{j}, \psi_{j}, \rho_{j}, j \in\{1, \ldots, D\}$,

$$
\text { where } \phi^{j} \leftrightarrow z_{j}, p_{j} \leftrightarrow \frac{\partial}{\partial z_{j}}, \psi^{j} \leftrightarrow d z_{j}, \rho_{j} \leftrightarrow \frac{\partial}{\partial\left(d z_{j}\right)}
$$

Theorem [Malikov/Schechtman/Vaintrob99;Borisov/Libgober00] There are globally well-defined fields on M,

$$
L^{\text {top }}=-: p_{j} \partial \phi^{j}:-: \rho_{j} \partial \psi^{j}:, J=: \rho_{j} \psi^{j}:, Q=-: \psi^{j} p_{j}:, \quad G=: \rho_{j} \partial \phi^{j}:,
$$

which yield a (topological) $N=2$ superconformal algebra.
The elliptic genus $\mathcal{E}_{M}(\tau, z)$ is the bigraded Euler characteristic of $\Omega_{M}^{c h}$, and $H^{*}\left(M, \Omega_{M}^{c h}\right)$ is a topological $N=2$ superconformal vertex algebra.

. . . and topologically half twisted sigma model

Theorem [Kapustin05]

There is a fine resolution $\Omega_{M}^{c h, D o l}$ of $\Omega_{M}^{c h}$ obtained by introducing variables $\phi^{\bar{\jmath}}, \psi^{\overline{3}}$,

$$
\text { where } \psi^{\bar{\jmath}} \text { determines the grading and } d_{D o l}:=\psi^{\bar{\jmath}} \frac{\partial}{\partial \phi^{\bar{\jmath}}} \text {, }
$$

such that

$$
\mathcal{E}_{M}(\tau, z)=\operatorname{sir}_{H^{*}\left(\Omega_{M}^{\text {ch,Dol }}\right)}\left(y^{J_{0}-D / 2} q^{L_{0}^{\text {top }}}\right) .
$$

The $d_{D o l}$-cohomology $H^{*}\left(\Omega_{M}^{c h, D o l}\right)$ is the large volume limit of the BRST-cohomology $\mathcal{H}_{N S}^{B R S T}$ of Witten's half-twisted σ-model on M.

Conclusion:

$$
\begin{aligned}
\hline \mathcal{E}_{M}(\tau, z) & \stackrel{\substack{\text { spectral } \\
\text { flow }}}{=} \operatorname{sTr}_{\mathcal{H}_{R}^{B R S T}\left(y^{J_{0}} q^{L_{0}-D / 8}\right)} \\
& =\operatorname{sTr}_{\mathcal{H}_{R}}\left(y^{J_{0}} q^{L_{0}-D / 8} \bar{q}^{L_{0}-D / 8}\right)=\mathcal{E}_{C F T}(\tau, z) .
\end{aligned}
$$

3. The elliptic genus of K3

For every K3 surface M,

$$
\mathcal{E}_{\mathrm{K} 3}(\tau, z)=8\left(\frac{\vartheta_{2}(\tau, z)}{\vartheta_{2}(\tau, 0)}\right)^{2}+8\left(\frac{\vartheta_{3}(\tau, z)}{\vartheta_{3}(\tau, 0)}\right)^{2}+8\left(\frac{\vartheta_{4}(\tau, z)}{\vartheta_{4}(\tau, 0)}\right)^{2} .
$$

For every $N=(2,2)$ SCFT at central charges $c=\bar{c}=6$ with space-time SUSY and integral $U(1)$ charges:
The theory has $N=(4,4)$ SUSY, and its CFT elliptic genus either vanishes, or it agrees with $\mathcal{E}_{\text {K3 }}(\tau, z)$.

Definition (K3 THEORY):
An $N=(2,2)$ SCFT at $c=\bar{c}=6$ with space-time SUSY, integral $U(1)$ charges and CFT elliptic genus $\mathcal{E}_{\mathrm{K} 3}(\tau, z)$.

Decomposition into irreducible $N=4$ characters

3 types of $N=4$ irreps \mathcal{H}_{\bullet} with $\chi_{\bullet}(\tau, z)=s \operatorname{Tr}_{\mathcal{H}_{\bullet}}\left(y^{J_{0}} q^{L_{0}-1 / 4}\right)$:

- vacuum \mathcal{H}_{0} with $\chi_{0}(\tau, 0)=-2$
- massless matter $\mathcal{H}_{1 / 2}$ with $\chi_{1 / 2}(\tau, 0)=1$
- massive matter $\mathcal{H}_{h}\left(h \in \mathbb{R}_{>0}\right), \chi_{h}(\tau, z)=q^{h} \widetilde{\chi}(\tau, z), \chi_{h}(\tau, 0)=0$

Ansatz: $\mathcal{H}_{R}=\mathcal{H}_{0} \otimes \overline{\mathcal{H}}_{0} \oplus 20 \mathcal{H}_{1 / 2} \otimes \overline{\mathcal{H}}_{1 / 2}$
$\oplus\left(\oplus_{0<n \in \mathbb{N}}\left[f_{n} \mathcal{H}_{n} \otimes \overline{\mathcal{H}}_{0} \oplus \bar{f}_{n} \mathcal{H}_{0} \otimes \overline{\mathcal{H}}_{n}\right]\right)$
$\oplus\left(\oplus_{0<m \in \mathbb{N}}\left[g_{m} \mathcal{H}_{m} \otimes \overline{\mathcal{H}}_{1 / 2} \oplus \bar{g}_{m} \mathcal{H}_{1 / 2} \otimes \overline{\mathcal{H}}_{m}\right]\right)$
$\oplus \oplus_{0<h, \overline{\bar{c}} \in \mathbb{R}} k_{h, \bar{h}} \mathcal{H}_{h} \otimes \overline{\mathcal{H}}_{\bar{h}}$
where all $f_{n}, \bar{f}_{n}, g_{m}, \bar{g}_{m}, k_{h, \bar{h}}$ are non-negative integers.

$$
\begin{array}{r}
\mathcal{E}_{\mathrm{K} 3}(\tau, z)=-2 \chi_{0}(\tau, z)+20 \chi_{1 / 2}(\tau, z)+2 e(\tau) \widetilde{\chi}(\tau, z), \\
2 e(\tau)=\sum_{n=1}^{\infty}\left(g_{n}-2 f_{n}\right) q^{n}
\end{array}
$$

Conjecture [Ooguri89,W00] $g_{n}-2 f_{n} \geq 0$ for all $n \in \mathbb{N}$ proved in [Eguchi/Hikami09].

4. Some conjectures

Conjecture [Eguchi/Ooguri/Tachikawa10]

For all $n, g_{n}-2 f_{n}$ gives the dimension of a non-trivial representation of the Mathieu group M_{24}.
Proved in [Gannon12], using results of Cheng, Duncan, Gaberdiel, Hohenegger, Persson, Ronellenfitsch, Volpato.

4. Some conjectures

Theorem [Eguchi/Ooguri/Tachikawa10,Gannon12]

There exists a representation \mathcal{R}_{n} of M_{24} for every $n \in \mathbb{N}$, such that

$$
\lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right) \cong(-2) \mathcal{H}_{0} \oplus 20 \mathcal{H}_{1 / 2} \oplus \bigoplus_{n=1}\left(\mathcal{R}_{n} \oplus \overline{\mathcal{R}}_{n}\right) \otimes \mathcal{H}_{n}
$$

as a representation of M_{24} and of the $N=4$ superconformal algebra.

4. Some conjectures

Theorem [Eguchi/Ooguri/Tachikawa10,Gannon12]

There exists a representation \mathcal{R}_{n} of M_{24} for every $n \in \mathbb{N}$, such that

$$
\lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right) \cong(-2) \mathcal{H}_{0} \oplus 20 \mathcal{H}_{1 / 2} \oplus \bigoplus_{n=1}\left(\mathcal{R}_{n} \oplus \overline{\mathcal{R}}_{n}\right) \otimes \mathcal{H}_{n}
$$

as a representation of M_{24} and of the $N=4$ superconformal algebra.

WHY?

4. Some conjectures

Theorem [Eguchi/Ooguri/Tachikawa10,Gannon12]

There exists a representation \mathcal{R}_{n} of M_{24} for every $n \in \mathbb{N}$, such that

$$
\lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right) \cong(-2) \mathcal{H}_{0} \oplus 20 \mathcal{H}_{1 / 2} \oplus \bigoplus_{n=1}^{\bigoplus}\left(\mathcal{R}_{n} \oplus \overline{\mathcal{R}}_{n}\right) \otimes \mathcal{H}_{n}
$$

as a representation of M_{24} and of the $N=4$ superconformal algebra.

WHY?

Theorem [Mukai88]

If G is a symmetry group of a K3 surface M,
that is, G fixes the two-forms that define the hyperkähler structure of M,
then G is isomorphic to a subgroup of the Mathieu group M_{24}, and $|G| \leq 960 \ll 244.823 .040=\left|M_{24}\right|$.

Some open conjectures

Observation [Taormina/W10-13]

The map $\mathcal{H}_{R} \rightarrow \lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right)$ depends on the choice of a geometric interpretation; SO: restrict to geometric symmetry groups.

Some open conjectures

Observation [Taormina/W10-13]

The map $\mathcal{H}_{R} \rightarrow \lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right)$ depends on the choice of a geometric interpretation; sO: restrict to geometric symmetry groups.

Conjecture [Taormina/W10-13]

In every geometric interpretation,
$\lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right) \cong(-2) \mathcal{H}_{0} \oplus \mathcal{R}_{1 / 2} \otimes \mathcal{H}_{1 / 2} \oplus \bigoplus_{n=1}\left(\mathcal{R}_{n} \oplus \overline{\mathcal{R}}_{n}\right) \otimes \mathcal{H}_{n}$ as a representation of the geometric symmetry group $G \subset M_{24}$; the rhs collects the symmetries from distinct points of the moduli space.

Some open conjectures

Observation [Taormina/W10-13]

The map $\mathcal{H}_{R} \rightarrow \lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right)$ depends on the choice of a geometric interpretation; sO: restrict to geometric symmetry groups.

Conjecture [Taormina/W10-13]

In every geometric interpretation,
$\lim _{\text {vol } \rightarrow \infty}\left(\mathcal{H}_{R}^{B R S T}\right) \cong(-2) \mathcal{H}_{0} \oplus \mathcal{R}_{1 / 2} \otimes \mathcal{H}_{1 / 2} \oplus \bigoplus_{n=1}^{\infty}\left(\mathcal{R}_{n} \oplus \overline{\mathcal{R}}_{n}\right) \otimes \mathcal{H}_{n}$ as a representation of the geometric symmetry group $G \subset M_{24}$; the rhs collects the symmetries from distinct points of the moduli space.

Evidence [Taormina/W13]

\mathcal{R}_{1} as common representation space of all geometric symmetry groups of Kummer K3s yields an action of the maximal subgroup $\mathbb{Z}_{2}^{4} \rtimes A_{8} \subset M_{24}$ induced from an irrep of M_{24} on \mathcal{R}_{1}.

A simpler open conjecture

Recall:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{K} 3}(\tau, z) & =\int_{\mathrm{K} 3} \operatorname{Td}(\mathrm{~K} 3) \operatorname{ch}\left(\mathbb{E}_{q,-y}\right) \\
& =-2 \chi_{0}(\tau, z)+20 \chi_{1 / 2}(\tau, z)+\sum_{n=1}^{\infty}\left(g_{n}-2 f_{n}\right) \chi_{n}(\tau, z)
\end{aligned}
$$

A simpler open conjecture

Recall:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{K} 3}(\tau, z) & =\int_{\mathrm{K} 3} \operatorname{Td}(\mathrm{~K} 3) \operatorname{ch}\left(\mathbb{E}_{q,-y}\right) \\
& =-2 \chi_{0}(\tau, z)+20 \chi_{1 / 2}(\tau, z)+\sum_{n=1}^{\infty}\left(g_{n}-2 f_{n}\right) \chi_{n}(\tau, z)
\end{aligned}
$$

Conjecture [W13]
There are polynomials p_{n} for every $n \in \mathbb{N}$, such that

$$
\mathbb{E}_{q,-y}=-\mathcal{O}_{\mathrm{K} 3} \chi_{0}(\tau, z)-T \chi_{1 / 2}(\tau, z)+\sum_{n=1}^{\infty} p_{n}(T) \chi_{n}(\tau, z)
$$

where $2 \operatorname{dim}\left(\mathcal{R}_{n}\right)=g_{n}-2 f_{n}=\int_{\mathrm{K} 3} \operatorname{Td}(\mathrm{~K} 3) p_{n}(T)$ for all $n \in \mathbb{N}$. Moreover, $p_{n}(T) \rightarrow \mathcal{R}_{n} \oplus \overline{\mathcal{R}}_{n}$ carries a natural action of every geometric symmetry group $G \subset M_{24}$ of K3.

The End

Thank you FOR YOUR ATTENTION!

