There are five fundamental operations in mathematics: addition, subtraction, multiplication, division, and modular forms.

— Apocryphal quote ascribed to Martin Eichler

Mock modular forms and physics: an invitation

Sameer Murthy King's College London

> IMSc Chennai April 14, 2014

Modular forms

What are modular forms?

Holomorphic function $f(\tau)$, $\tau \in \mathcal{H}$

$$f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau) \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$
 Ring structure

Periodicity $\tau \to \tau + 1 \implies$ Fourier series

$$f(\tau) = \sum_{n} a(n)q^{n} \,, \qquad q = e^{2\pi i \tau}$$
 Interesting numbers

Basic examples: Eisenstein series

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n} = 1 + 240 q + 2160 q^2 + \cdots,$$

$$E_6(\tau) = 1 - 504 \sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n} = 1 - 504 q - 16632 q^2 - \dots,$$

$$E_{2k}(\tau) = \cdots$$

The space of modular forms of a given weight is finite-dimensional

(see e.g. Zagier, 1-2-3 of modular forms)

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1-q^n)^{24} = q - 24 \, q^2 + 252 \, q^3 + \dots$$

$$= \left(E_4(\tau)^3 - E_6(\tau)^2\right) / 1728$$
 Ramanujan tau function

$$j(\tau) = (7E_4(\tau)^3 + 5E_6(\tau)^2)/\Delta(\tau)$$
$$= q^{-1} + 24 + 196884 q + \cdots$$

Partition function of Leech lattice

1 + 196883

(c.f. Talks of Harvey, Hikami, Taormina, Wendland)

Relations to physics

1. Modular forms are generating functions of solutions to interesting counting problems

e.g.: Heterotic string theory has 16 supersymmetries

Number of 1/2 BPS states d(N) at $m^2=Q^2=N-1$

Fundamental string states with right-movers in ground state

Left-moving energy N distributed in 24 oscillators

(Dabholkar, Harvey '89)

$$\sum_{N=0}^{\infty} d_{\text{micro}}(N) q^{N-1} = \frac{q^{-1}}{\prod_{n=1}^{\infty} (1 - q^n)} = \frac{1}{\Delta(\tau)} = \frac{1}{\eta(\tau)^{24}}$$
$$= q^{-1} + 24 + 324 q + \cdots$$

In string theory, ensembles of these microscopic excitations form black holes

Microscopic

Macroscopic

Sen '94, Strominger-Vafa '96

$$d_{\text{micro}}(N) = e^{\pi\sqrt{N}} + \cdots \quad (N \to \infty)$$

Bekenstein-Hawking '74

$$S_{\mathrm{BH}}^{\mathrm{class}} = \frac{A_H}{4\ell_{\mathrm{Pl}}^2} = \pi\sqrt{N}$$

Asymptotic estimates a very useful guide for Quantum gravity: Hardy-Ramanujan-Rademacher expansion

2. CFT₂ on a torus naturally produces modular forms

Vibration of a string governed by a two-dimensional CFT.

$$\tau \to \frac{a\tau + b}{c\tau + d}$$

Large coordinate transformations

Symmetry should be reflected in the physics.

Superconformal theories produce holomorphic partition functions

N=(2,2) SCFT
$$(L_0, Q_0^{\pm}, J_0), (-1)^F$$

Elliptic
$$Z_{\mathrm{ell}}(M; \tau, z) = \mathrm{Tr}_{\mathcal{H}(M)} \, (-1)^{F+\widetilde{F}} \, q^{L_0} \, \overline{q}^{\widetilde{L_0}} \, \zeta^{J_0}$$
 genus $q:=e^{2\pi i \tau}, \; \zeta:=e^{2\pi i z}$.

 $Z_{\rm ell}$ holomorphic in au (Witten)

(Subtlety! Troost,+Ashok, Eguchi-Sugawara, Talk of Troost)

Jacobi forms

Jacobi forms: basic definitions

(Eichler-Zagier)

Interesting numbers

 $\varphi(\tau,z)$ holomorphic in $\tau \in \mathcal{H}$ and $z \in \mathbb{C}$

M: $\varphi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^k e^{\frac{2\pi i m c z^2}{c\tau+d}} \varphi(\tau,z) \quad \forall \quad \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \in SL(2;\mathbb{Z})$

(Weight)

E: $\varphi(\tau, z + \lambda \tau + \mu) = e^{-2\pi i m \lambda^2 \tau + 2\lambda z} \varphi(\tau, z)$ $\forall \lambda, \mu \in \mathcal{Z}$

Index

Fourier expansion:

$$\varphi(\tau, z) = \sum_{n, r} c(n, r) q^n \zeta^r$$

Growth condition (weak Jacobi form): c(n,r) = 0 unless $n \ge 0$.

Relation between Jacobi forms and modular forms

Elliptic property \Rightarrow *Theta expansion*:

$$\varphi(\tau, z) = \sum_{\ell \in \mathbb{Z}/2m\mathbb{Z}} h_{\ell}(\tau) \,\vartheta_{m,\ell}(\tau, z) \,,$$

where
$$artheta_{m,\ell}(au,z):=\sum_{r\in \mathbb{Z}top \pmod{2m}}q^{r^2/4m}\,\zeta^r$$
 .

$$\Rightarrow h_{\ell}(\tau) = \int \varphi(\tau, z) e^{-2\pi i \ell z} dz \begin{vmatrix} \text{vector valued} \\ \text{modular form} \end{vmatrix}$$

Examples of Jacobi forms

$$A = \varphi_{-2,1}(\tau, z) = \frac{\vartheta_1(\tau, z)^2}{\eta(\tau)^6} = \frac{(\zeta - 1)^2}{\zeta} - 2\frac{(\zeta - 1)^4}{\zeta^2} q + \cdots$$

$$B = \varphi_{0,1}(\tau, z) = \sum_{i=2}^{4} \frac{\vartheta_i(\tau, z)^2}{\vartheta_i(\tau, 0)^2}$$
$$= \frac{\zeta^2 + 10\zeta + 1}{\zeta} + 2\frac{(\zeta - 1)^2 (5\zeta^2 - 22\zeta + 5)}{\zeta^2} q + \cdots$$

$$C = \varphi_{-1,2}(\tau, z) = \frac{\vartheta_1(\tau, 2z)}{\eta(\tau)^3} = \frac{\zeta^2 - 1}{\zeta} - \frac{(\zeta^2 - 1)^3}{\zeta^3} q + \cdots$$

Ring of weak Jacobi forms generated by A, B, C.

What is new?

Wall-crossing and BH phase transitions

A concrete realization: N=4 string theory

Partition function of 1/4 BPS dyons

(Dijkgraaf, Verlinde, Verlinde; Gaiotto, Strominger, Yin; David, Sen)

$$Z_{(\mathrm{dyon})}^{(N=4)}(\tau,z,\sigma) = \frac{1}{\Phi_{10}(\tau,z,\sigma)}$$
 Igusa cusp form
$$= \sum_{m=-1}^{\infty} \psi_m(\tau,z)\,e^{2\pi i m \sigma} .$$
 Has zeros (divisors) in the Siegel upper half plane.

Igusa cusp form

Has zeròs (divisors)

Meromorphic Jacobi forms of weight -10, index m. (poles in z)

$$\psi_m(\tau, z) \stackrel{?}{=} \sum_{n,r} d_{\text{micro}}(n, r) q^n \zeta^r$$
.

(c.f. talks of Hohenneger, Govindarajan, Persson, Volpato)

Questions

 What is the correct expansion of the meromorphic Jacobi forms?

 Can we extract the degeneracies of the single-centered black hole?

 What are the modular properties of the corresponding Fourier coefficients?

Mock modular forms.

Solution of BH wall-crossing problem

Canonical decomposition of the partition function:

Partition function of the isolated BH is a mock modular form.

Multi-centers and wall-crossing info in Appell-Lerch sum.