There are five fundamental operations in
mathematics:

addition, subtraction, multiplication,
division, and modular forms.

— Apocryphal quote ascribed to Martin Eichler
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What are modular forms?

Holomorphic function f(7), TeH

Ring structure

Periodicity 7 —7+1 =—> Fourier series
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Basic examples: Eisenstein series
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The space of modular forms of a given
weight is finite-dimensional

(see e.g. Zagier, 1-2-3 of modular forms)
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(c.f. Talks of Harvey, Hikami,
1+ 196833 Taormina, Wendland)
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1. Modular forms are generating functions of
solutions to interesting counting problems

e.d.. Heterotic string theory has 16 supersymmetries
Number of 1/2 BPS statesd(N)at m* = Q* = N — 1
Fundamental string states with right-movers in ground state

Left-moving energy N distributed in 24 oscillators
(Dabholkar, Harvey ‘89)
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In string theory, ensembles of these
microscopic excitations form black holes

Microscopic Macroscopic

Sen '94, Strominger-Vafa '96 Bekenstein-Hawking 74
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Asymptotic estimates a very useful guide for Quantum gravity:
Hardy-Ramanujan-Rademacher expansion



2. CFT, on a torus naturally produces
modular forms

Vibration of a string governed by a two-dimensional CFT.
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Large coordinate
transformations

Symmetry should be reflected in the physics.



Superconformal theories produce
holomorphic partition functions

N=(2,2) SCFT (Lo, QF, Jo), (—1)*

Elliptic  Zen(M;7,2) = Try (—1)F+ﬁ g0 g ¢
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Zen holomorphic Ly
in 7 (and z). (Witten)
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(Subtlety! Troost,+Ashok,
Eguchi-Sugawara, Talk of Troost)
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Jacobi forms: basic definitions | |
(Eichler-Zagier)
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Interesting numbers
Fourier B n ~r
expansion: Pl 2) = )@' ;

Growth condition (weak Jacobi form): ¢(n,r) = 0 unless n > 0.




Relation between Jacobi forms and
modular forms

Elliptic property =

where

Theta expansion:
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vector valued
modular form



Examples of Jacobi forms
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Ring of weak Jacobi forms generated by A, B, C.




<What IS new?




Wall-crossing and BH phase transitions
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Serious problem: throwing out multi- &
centered BHs (Denef-Moore 2007) O P

destroys the modular symmetry.




A concrete realization: N=4 string theory

(Dijkgraaf, Verlinde, Verlinde;

Partition function of 1/4 BPS dyons Gaiotto, Strominger, Yin;
David, Sen)

(N=4) B 1 Igusa cusp form
% (dyon) (7,2,0) = )/

(I)l()(T, <y O

Has zeros (divisors)

O
— Z Vm (T, 2) e2™MI | in the Siegel upper
half plane.

m=—1

Meromorphic Jacobi forms of weight -10, index m.
(poles in z)
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(c.f. talks of Hohenneger, Govindarajan, Persson, Volpato)



Questions

e \What is the correct expansion of the meromorphic
Jacobi forms?

e Can we extract the degeneracies of the single-centered
black hole?

e \What are the modular properties of the corresponding
Fourier coefficients?

== | Mock modular forms.




Solution of BH wall-crossing problem

Canonical decomposition of the partition function:

wm _ wBH 1+ wmulti

Multi-centers and
wall-crossing info in
Appell-Lerch sum.

Partition function of the isolated BH
IS @ mock modular form.




