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The term “moonshine” generally refers to surprising connections between 
a priori unrelated parts of mathematics and physics, involving:

What is Moonshine?

The most famous example is Monstrous Moonshine.

infinite-dimensional
algebras



monster group

bosonic string theory on

monster Lie algebra 

modular function

M

(T 24/⇤Leech)/Z2)

(holomorphic VOA       )V \

m

J(⌧) = q�1 + 196884q + · · ·

Monstrous Moonshine

(Figure stolen from Jeff ’s talk!)



monster group

bosonic string theory on

monster Lie algebra 

modular function

M

(T 24/⇤Leech)/Z2)

(holomorphic VOA       )V \

m

BRST cohomology

automorphism group

denominator formula

graded dimension
J(⌧) = q�1 + 196884q + · · ·

Lie algebra 
automorphisms

Monstrous Moonshine

moonshine

(Figure stolen from Jeff ’s talk!)



EOT observation: Fourier coefficients of K3-elliptic genus are (sums of) 
dimensions of irreps of M24

A completely new moonshine phenomenon to explore!

In 2010, Eguchi, Ooguri, Tachikawa conjectured that there is Moonshine in the 
elliptic genus of K3 connected to the finite sporadic group M24 ⇢ S24



monster group M

Monstrous Moonshine Mathieu Moonshine

Mathieu group M24

bosonic CFT superconformal field theory

Virasoro algebra superconformal algebraN = (4, 4)

J -function elliptic genus of K3

McKay-Thompson series twining genera

monster module V \ ?

mmonster Lie algebra ?
[Eguchi, Ooguri, Tachikawa][Cheng][Gaberdiel, Hohenegger, Volpato]

[Eguchi, Hikami][Taormina,Wendland][Gannon]
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g, h 2 M24

for each commuting pair
�g,h : H⇥ C ! C

such that for             we recover the twining generag = e �e,h = �h

This is the analogue of Norton’s generalized monstrous moonshine 

Zg,h : H ! C g, h 2 M

Partially explained by orbifolds of the FLM monster VOA        .V \ [Dixon, Ginsparg, Harvey]
[Tuite]

Proven in special cases but the full conjecture still open. [Dong, Li, Mason][Höhn][Tuite]
[Carnahan]

Generalized Mathieu Moonshine
[Gaberdiel, D.P., Ronellenfitsch, Volpato]

Introduce a family of functions, the twisted twining genera:



g, h 2 M24

for each commuting pair
�g,h : H⇥ C ! C

such that for             we recover the twining generag = e �e,h = �h

This is the analogue of Norton’s generalized monstrous moonshine 

Zg,h : H ! C g, h 2 M

Can we also interpret generalized Mathieu moonshine 
in terms of orbifolds?

Generalized Mathieu Moonshine
[Gaberdiel, D.P., Ronellenfitsch, Volpato]

Introduce a family of functions, the twisted twining genera:
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Our main assumption is that the twisted twining genera 
behave similarly as for characters of a holomorphic orbifold

Fact: Consistent holomorphic orbifolds are classified by                      .       H3(G, U(1))
[Dijkgraaf, Witten][Dijkgraaf, Pasquier, Roche][Bantay][Coste, Gannon, Ruelle]

multiplier phases of characters                 determined by 2-cocycleZg,h(⌧)

cg 2 H2(CG(g), U(1))

obtained from a class                                 via[↵] 2 H3(G,U(1))

ch(g1, g2) =
↵(h, g1, g2)↵(g1, g2, (g1g2)�1h(g1g2))

↵(g1, h, h�1g2h)



In particular, for the S- and T-transformations we have

Zg,h(⌧ + 1) = cg(g, h)Zg,gh(⌧)

Zg,h(�1/⌧) = ch(g, g�1)Zh,g�1(⌧)

[Bantay][Coste, Gannon, Ruelle]
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Zg,h(�1/⌧) = ch(g, g�1)Zh,g�1(⌧)

Moreover, under conjugation of          one has the general relationg, h

8k 2 G

[Bantay][Coste, Gannon, Ruelle]

Zg,h(⌧) =
cg(h, k)

cg(k, k�1hk)
Zk�1gk,k�1hk(⌧)
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Cohomological Obstructions from H3(G)

Whenever     commutes with both     and     one findsk g h

Zg,h =
cg(h, k)
cg(k, h)

Zg,h

So                  unless the 2-cocycle       is regular:Zg,h = 0 cg

cg(h, k) = cg(k, h)

When this is not satisfied we have obstructions! [Gannon]

Zg,h(⌧) =
cg(h, k)

cg(k, k�1hk)
Zk�1gk,k�1hk(⌧)
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Theorem [GHPV]:

“Almost theorem” [GHPV]:

For each element                    there exists projective reps           of                 such that   g 2 M24 Rg,r CM24(g)

�g,h(⌧, z) =
X

r,`

TrRg,r (h)�r+1/4,`(⌧, z), h 2 CM24(g)

This was verified for the first 500 coefficients. 

(in deriving these results we use the fact that                                     [Ellis, Dutour-Sikiric] )H3(M24, U(1)) ⇠= Z12

This is very strong evidence that generalized Mathieu Moonshine holds!

But what is the physical interpretation?

For each commuting pair                     there exists functions                   satisfying g, h 2 M24 �g,h(⌧, z)

all the expected modular properties with respect to subgroups �g,h ⇢ SL(2,Z)

There is a unique class                                       which determines all the modular phases.  [↵] 2 H3(M24, U(1))

Many of the           vanish due to cohomological obstructions controlled by �g,h H3(M24, U(1))
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Let      be a Calabi-Yau manifold and                     its elliptic genus.X �(X; ⌧, z)

�(X; ⌧, z) is a weak Jacobi form of weight zero and index (dimC X)/2 [Gritsenko]

Dijkgraaf, Moore, Verlinde, Verlinde defined the second quantized elliptic genus as

 X(�, ⌧, z) :=
1X

n=0

pn�(SnX; ⌧, z) p = e2⇡i�

 X(�, ⌧, z) = exp

" 1X

L=1

pLTL�(X; ⌧, z)

#
=

Y

n>0,m�0
`2Z

(1� pnqmy`)�cX(mn,`)

Hecke operator 

TL : J0,m ! J0,mL

Fourier coefficients of

�(X; ⌧, z) =
X

k�0,`2Z
cX(k, `)qky`

DMVV proved the following remarkable formula:



Second quantized elliptic genus

Gritsenko later showed that 

�X(�, ⌧, z) :=
AX(�, ⌧, z)
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is a Siegel modular form of weight cX(0, 0)/2



Second quantized elliptic genus

�X(�, ⌧, z) :=
AX(�, ⌧, z)

 X(�, ⌧, z)

is a Siegel modular form of weight cX(0, 0)/2

AX is called the “Hodge anomaly”; only depends on the Hodge numbers of X

This is an example of a (multiplicative) Borcherds lift:

� :
SL(2,Z)

Jacobi automorphic

SO(3, 2;Z)

Gritsenko later showed that 



For       a K3-manifold we have that X

�X = �10 = pqy
Y

m,n,`)>0

(1� pmqny`)c(mn,`)

Igusa cusp form of
 weight 10 for
 Sp(4;Z)

Second quantized elliptic genus



For       a K3-manifold we have that X

�X = �10 = pqy
Y

m,n,`)>0

(1� pmqny`)c(mn,`)

�(K3; ⌧, z) = 2�0,1(⌧, z) =
X

n�0,`2Z
c(n, `)qny`

Igusa cusp form of
 weight 10 for
 Sp(4;Z)

This is a multiplicative Borcherds lift of the K3 elliptic genus

The inverse is the partition function of 1/4 BPS dyons in                 or  Het/T 6 IIA/(K3⇥ T 2)
[Dijkgraaf, Verlinde, Verlinde][Shih, Strominger, Yin]

Second quantized elliptic genus



Counting dyons in              string theoryN = 4

(P,Q) 2 �6,22 � �6,22

Large moduli space of such theories:

M = O(6, 22;Z)\O(6, 22;R)/(O(6)⇥O(22))

The discrete duality group preserved the lattice of electric-magnetic charges:

The full non-perturbative duality group is

SL(2,Z)⇥O(6, 22;Z)

(P,Q) transform as a doublet under SL(2,Z)



Hilbert space of states decomposes as 

H =
O

(P,Q)2�6,22��6,22

HQ,P

These can be realized as charged black holes in the supergravity limit.



Hilbert space of states decomposes as 

H =
O

(P,Q)2�6,22��6,22

HQ,P

These can be realized as charged black holes in the supergravity limit.

We are interested in BPS-states:

1/2 BPS: Purely electric              or magnetic(0, Q) (P, 0)

1/4 BPS (generic): Dyonic (Q,P )



1/2 BPS-states are counted by 

1

⌘(⌧)24
=

X

n2Z
d(n)qn

[Dabholkar, Harvey]

number of 1/2 BPS-states with charge       such that d(n) = Q n = Q2/2



In general, 1/4 BPS states are counted by the 6th helicity supertrace
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1

6!
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�
(�1)J(2J)6

�
J = helicity
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In general, 1/4 BPS states are counted by the 6th helicity supertrace

B6(P,Q) :=
1

6!
TrHP,Q

�
(�1)J(2J)6

�
J = helicity

[Kiritsis]

1/2 BPS-states are counted by 

1

⌘(⌧)24
=

X

n2Z
d(n)qn

[Dabholkar, Harvey]

number of 1/2 BPS-states with charge       such that d(n) = Q n = Q2/2

invariant under SL(2,Z)⇥ SO(6, 22;Z)
can only depend on 
the combinations

P 2, Q2, Q · P
locally constant on M
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Generating function:

1

�10(�, ⌧, z)
=

X

m,n,`

d(m,n, `)pmqny`

(q := e2⇡i⌧ , y := e2⇡iz, p := e2⇡i�)

lim
z!0

�10(�, ⌧, z)

(2⇡iz)2
= ⌘(�)24⌘(⌧)24

“wall-crossing
formula” 

1/4-BPS 1/2-BPS1/2-BPS

�10 has a double pole at             .  In the limit, we have a factorizationz = 0

with the identification

B6(P,Q) = d
⇣

Q2

2 , P 2

2 , P ·Q
⌘
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Inspired by the aforementioned results we seek a similar spacetime interpretation 
for the twisted twining genera                  of generalized Mathieu moonshine.�g,h(⌧, z)

This generalizes earlier results by Cheng and Govindarajan.

Note that this depends on the choice of 3-cocycle ↵ 2 H3(M24, U(1))
but different representatives in each class        simply amounts to a shift of  [↵] �

We define the second quantized twisted twining genus as:
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T ↵
L �g,h(⌧, z) :=

1

L

X

a,d>0
ad=L

d�1X

b=0

�g,h

�
a b
0 d

�
�gd,g�b,ha

�
a⌧+b

d , az
�

This is a generalization of similar Hecke operators used in generalized monstrous 
moonshine by Ganter & Carnahan. (see also [Tuite][Govindarajan])
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On the other hand,  for                     we in fact have 

by cohomological obstructions from H3(M24, U(1))

g, h 2 2B

T ↵
2 �g,h(⌧, z) =

1

2

h
� �g,e(2⌧, 2z) + �e,h(

⌧
2 , z)� �e,gh(

⌧+1
2 , z)

i

signs come from the multiplier system �g,h

�g,h(⌧, z) = 0

g, h 2 2B
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Infinite product formula

M = O(h) N = O(g)

� length of the shortest cycle of     in its 24-dim permutation repsg

ĉg,h(d,m, `, t) :=
M�1X

k=0

�N�1X

b=0

e�
2⇡itk

M

M

e
2⇡ibm
�N

�N
�g,h

�
k b
0 d

�
cgd,g�bhk(

md

N�
, `)

1
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The second quantized twisted twining genera satisfy the following properties

Infinite product formula

�g,h(�, ⌧, z) :=
Ag,h(�, ⌧, z)

 g,h(�, ⌧, z)

The ratio “Hodge anomaly”

Ag,h = �p
#1(⌧, z)2

⌘(⌧)6
⌘g,h(⌧)

Mason’s generalized 
eta-products

is a Siegel modular form for a subgroup �
(2)
g,h ⇢ Sp(4;R)

lim
z!0

�g,h(�, ⌧, z)

(2⇡iz)2
= ⌘g,h(⌧)⌘g,h(N��)

“Wall-crossing formula”

For             this was conjectured by Cheng and partially proven by Raum.g = e
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Automorphy of            follow from  �g,h

“Electric-magnetic duality”

�g,h(�, ⌧, z) = �g,h0(
⌧

N�
, N��, z)

where       is not necessarily in the same conjugacy class  h0 [h]

This generalizes the electric-magnetic duality in �10 [Dijkgraaf, Verlinde, Verlinde]

Using results of Gritsenko-Nikulin, one also has invariance under (an 
extension of) the para-modular group

�t(N) = {

0

BB@

⇤ t⇤ ⇤ ⇤
⇤ ⇤ ⇤ t�1⇤
N⇤ Nt⇤ ⇤ ⇤
Nt⇤ Nt⇤ t⇤ ⇤

1

CCA 2 Sp(4,Q), ⇤ 2 Z}
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Every           is a modular function for some finite index subgroup �g,h �(2)
g,h

of a para-modular group       for some  �t t

We can therefore view this our construction as a twisted equivariant 
generalization of a multiplicative Borcherds lift

MultG[�g,h] := Ag,h(�, ⌧, z)exp

"
�

1X

L=1

pLT ↵
L �g,h(⌧, z)

#



�g,h(⌧, z)

twisted twining genera
(weak Jacobi forms)

generalized eta-products
(modular forms)

second-quantized twisted twining genera
(Siegel modular forms)

twisted equivariant 
multiplicative lift z ! 0

�g,h(�, ⌧, z)

⌘g,h(⌧)⌘g,h0(N��)

This resolves a puzzle about the connection with Mason’s old version of 
generalized         -moonshine for eta-productsM24

g = e(For              this was observed previously by Cheng and Govindarajan. )

(“second quantization”) (“wall-crossing”)
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Physical interpretation: CHL-models

Can we interpret the second quantized twisted twining genera as 
counting spacetime BPS-states?

Suppose           are commuting symmetries of the internal superconformal CFT(g, h)

of type                            or  II/(K3⇥ T 2) Het/T 6

Consider the orbifold of this theory by g
N = 4new             theory

“CHL-model”
[Chaudhuri, Hockney, Lykken]

B6;g,h(P,Q) :=
1

6!
TrHg

Q,P
(h(�1)2J(2J)6) [Sen]

Computed for some pairs of symmetries [Dabholkar, Gaiotto][Dabholkar, Nampuri][Jatkar, Sen][David]
[Dabholkar, Cheng][Govindarajan][Sen]...

In this orbifold theory we have “twisted” dyon 
states counted by the twisted BPS-index



B6;g,h(P,Q) = dg,h
⇣

Q2

2 , P 2

2 , Q · P
⌘

Expanding the second quantized twisted twining genera

1

�g,h(�, ⌧, z)
=

X

m,n,`

dg,h(m,n, `)qnpmy`

we find that 



B6;g,h(P,Q) = dg,h
⇣

Q2

2 , P 2

2 , Q · P
⌘

Coincides with Fourier coefficients of 

�g,h

for some pairs            ! (g, h)

Expanding the second quantized twisted twining genera

1

�g,h(�, ⌧, z)
=

X

m,n,`

dg,h(m,n, `)qnpmy`

we find that 

Could it be that all of the             have interpretations as 
partition functions for BPS-dyons?

�g,h
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Umbral moonshine

Cheng, Duncan, Harvey proposed a generalization of Mathieu moonshine involving 23 
examples labelled by ADE-type root systems. 

(G(`), Z(`)) ` 2 {2, 3, 4, 5, 7, 13}

finite group

(G(2), Z(2)) =
�
M24,�(K3; ⌧, z)

� Mathieu moonshine 
corresponds to ` = 2

Jacobi form

We shall now see that there appears to be a relation between umbral moonshine and 
generalized Mathieu moonshine.

Here we focus on the 6 cases corresponding to pure A-type root systems.
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Let us consider the case when                      in  g, h 2 2A M24

�g,h = 0 but T ↵
2 �g,h 2 Jweak

0,2

In fact, this is nothing but the umbral Jacobi form for 

T ↵
2 �g,h = Z(3)(⌧, z)

The same holds for a few other conjugacy classes in           that we checked

T ↵
3 �g,h = Z(4)(⌧, z)(3A, 3A)

(4B, 4B) T ↵
4 �g,h = Z(5)(⌧, z)

` = 3

M24
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Overlap between umbral 
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MultG[�g,h] = Mult[Z(`)]

These Siegel modular forms also appear in CHL-models. [Sen][Govindarajan]

In fact, following an observation by Govindarajan, for these cases one can also show 
that the same functions can be obtained using an additive lift from 
the “Hodge anomaly’‘           Ag,h(�, ⌧, z)

A modular coincidence or an indication of some deeper relation?

Note that this is non-trivial since the LHS is constructed using an equivariant lift 
while the RHS is constructed using a standard Borcherds lift:



5. Summary and outlook



Summary

We have established that generalised Mathieu moonshine holds by 
computing all twisted twining genera         .�g,h

A key role is played by the third cohomology group                         . H3(M24, U(1))

Twisted twining genera can be expanded in projective characters of              .CM24(g)

All the second quantized twisted twining genera found and verified to be 
Siegel modular forms

Some of these correspond to partition functions of twisted dyons 
in CHL-models

Intriguing connection with umbral moonshine



Outlook

Can one construct a generalised Kac-Moody algebra for 
each conjugacy class                 ?[g] 2 M24

Relation with BPS-algebras à la Harvey Moore...?

(c.f. [Borcherds][Carnahan])

Generalised Umbral Moonshine...? [Cheng, Duncan, Harvey]

Recent interesting results indicate that there is are N=2 and N=1 
versions of Mathieu Moonshine in heterotic string theory. 

[Cheng, Dong, Duncan, Harvey, Kachru, Wrase][Harrison, Kachru, Paquette][Wrase]

Can one construct an action of          on the (cohomology) of the chiral 
de Rham complex of K3?

M24

Twisted equivariant additive lifts:                        ?AddG[Ag,h]

Does           play a role in mirror symmetry?M24

(see also [Eguchi, Hikami])

See Katrin’s talk!



What does           act on?M24

Our results strongly suggests that there is something like a holomorphic 
vertex operator algebra underlying Mathieu Moonshine

...but which one remains a mystery...


