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PACS. 68.43.De – Statistical mechanics of adsorbates.

PACS. 61.20.-p – Structure of liquids.

PACS. 79.60.Ht – Disordered structures.

Abstract. – Several recent imaging experiments access the equilibrium density profiles of a
monolayer of interacting particles confined to a two-dimensional substrate. When these particles
are in a fluid phase, we show that such data yields precise information regarding substrate disor-
der as reflected in one-point functions and two-point correlations of the fluid. Using Monte Carlo
simulations and replica generalizations of liquid state theories, we extract unusual two-point
correlations of time-averaged density inhomogeneities induced by disorder. Correlation func-
tions such as these have not hitherto been measured but should be experimentally accessible.

Place a perfect crystal in a disordered background deriving from a large number of ran-
domly placed, quenched point pinning sites. Allow the crystal to relax to its minimum free-
energy state in this background. A qualitative picture of structure in the state which results is
obtained by balancing the energy cost of distortions in the displacement field with the energy
gained from accommodating locally to the pinning, a competition conventionally described
via the paradigm of an elastic manifold in a random medium [1,2].
Such a description, however, is clearly inadequate when equilibrium structure in the pure

system does not resemble that of a crystal or indeed of any system in which particles of
fixed connectivity are separated by a mean distance from which deviations are energetically
penalized. The appropriate problem in this case is that of determining the correlations of an
equilibrium fluid in a quenched random environment [3, 4]. Such a description applies to a
large number of experimental situations. Indeed, systems modelled as elastic manifolds at low
temperatures must generically melt into fluid states at high enough temperatures. Despite
the general character of this problem, however, relatively little is known about the structure
of fluids in disordered media, especially when compared to our fairly detailed understanding
of the properties of elastic manifolds in quenched backgrounds [2].
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Fig. 1 – (a) Plot (color online) of the disorder potential βVd(x, y) used in our Monte Carlo simulation.
The plot is a single realization of a Gaussian random potential of strength σ2 = 0.1 and correlation
length ξ = 0.12σ0. (b) The reconstituted potential (see text) with the measured time-averaged density
ρ(r) (fig. 2(a)) as input. The correspondence between (a) and (b) is close but can be systematically
improved by averaging ρ(r) for longer times. The σ2 and ξ obtained from (b) agree with the input
values in (a) to within 0.3% and 17%, respectively.

Equilibrium fluids in a quenched disordered background exhibit disorder-averaged ver-
sions of the conventional correlation functions of the pure system. In addition, new classes
of non-trivial correlations emerge [3]. Modern imaging techniques enable direct microscopic
visualization of several two-dimensional situations which may be mapped onto the problem
of interest here: a monolayer of colloidal particles in the fluid phase confined to a rough
substrate [5–7], magnetic bubble domain arrays at large effective temperatures [8], incom-
mensurate charge-density wave systems in the depinned state [9] and varied phases of vortices
in thin superconducting films [10–14]. As we discuss in this letter, such experiments raise
the possibility of measuring novel correlation functions associated with fluid systems in the
presence of quenched disorder. In addition, the topography of surface randomness can be
accessed from the images yielded by such methods, even though it is the fluid (adsorbate)
particles which are being imaged and not the substrate directly.
This letter describes a procedure for reconstituting a disorder potential in microscopic

detail from the knowledge of the time-averaged density ρ(r) of the adsorbate in the liquid-
state and its spatial correlations. To this end, we also present accurate benchmarks for replica-
based liquid-state theories for correlations in disordered systems, comparing the predictions
of several of these theories with direct simulations. Our proposals are illustrated using Monte
Carlo computer experiments on a model two-dimensional fluid in a disordered background.
Figure 1 exhibits our main result: fig. 1(a) shows the random substrate potential used in our
Monte Carlo calculations, while fig. 1(b) exhibits the reconstituted potential obtained from
the induced ρ(r), using a replica-based liquid-state theory [3]. As these figures illustrate, to
an accuracy limited only by the computational effort required for a well-averaged ρ(r), our
calculation reconstitutes the imposed disorder potential.
Our model system comprises N = 780 particles confined to two dimensions and interacting

via an inverse-twelfth power pair potential. These particles also interact with a quenched one-
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body disorder potential Vd(r), modelled as a zero-mean Gaussian random field with specified
variance and short-ranged spatial correlations. The interaction part of the Hamiltonian is
thus: Hint = ε

∑
i<j(

σ0
rij
)12 +

∑
i Vd(ri). We set ε = 1 and σ0 = 1, thus setting energy and

length scales. We use periodic boundary conditions, benchmarking our calculations in the
non-disordered (pure) limit against earlier work [15].
A one-body random Gaussian disorder potential with zero mean value and exponentially

decaying correlations, Vd(r), is constructed following a method proposed by Chudnovsky
and Dickman [16]. The variance (σ2) of the Gaussian distribution and its spatial correlation
length (ξ) specify the potential. We introduce disorder with a suitably small spatial correlation
(ξ = 0.12) in units of the interparticle spacing. We study the system in the fluid regime for
ρ0 = 0.05, 0.3 and 0.9, both with relatively weak (σ2 = 0.01) and with stronger (up to σ2 = 1)
disorder. These disorder strengths are relatively moderate in comparison to the strength of the
pair interaction, justifying perturbation theory in the disorder potential. We disorder average
over five and ten disorder realisations for the weak and stronger disorder cases, respectively,
rejecting approximately the first 104–105 Monte Carlo Steps (MCS). We average over about
103–105 configurations each separated by 102 MCS, ensuring adequate thermal averaging of
the local density and correlation functions.
For an equilibrium fluid in the absence of disorder, all points in space are equivalent. As a

consequence, one-body distribution functions are structureless. This property does not hold, of
course, within a particular realization of disorder. It is only restored upon a disorder average.
If the fluid particles do not interact, the Boltzmann relation connects the time-averaged density
〈ρ(r)〉 to the local potential via 〈ρ(r)〉 ∼ ρ0 exp[−βVd(r)], where ρ0 is the average density of
the fluid, β = 1/kBT with T the temperature, and Vd(r) is the disorder potential. This result is
valid only in the limit of vanishingly small ρ0 or as T → ∞; equivalently, in the zero correlation
limit. Increasing ρ0 enhances the magnitude of the signal, making it easier to observe, but at
the same time introduces non-trivial correlations in particle positions. Thus, in a given disor-
der configuration, one-particle distributions reflect both the inhomogeneities of the potential as
well as the consequent structuring of the local density field as a consequence of correlations [17].
Figures 2(a) and (b) show the time-averaged density ρ(r) averaged over 1.41×105 indepen-

dent configurations for ρ0 = 0.9 and disorder strength σ2 = 0.1. Note the strong structuring
visible in fig. 2(a). There are pronounced, correlated peaks and troughs in the time-averaged
local density, indicative both of pinning due to local potential minima as well as the indirect
effects of inter-particle correlations. Figure 2(b) shows the theoretically obtained plot of ρ(r)
using a method described below. As can be seen, the theory captures the essential features
of the simulation data with fair accuracy, marginally overestimating the spatial fluctuations
(fig. 2(c)).
An inhomogeneous potential Vd(r) couples to the local number density and can thus be

absorbed into the definition of the chemical potential µ, leading to µ → µ(r) = µ + δµ(r)
where δµ(r) = −Vd(r). The Ursell function connects the local time-averaged density 〈ρ(r)〉
to the inhomogeneity in the chemical potential via

〈ρ(r)〉 = 〈ρ0(r)〉+ β

∫
dr′S

(
r, r′)δµ(

r′)+ . . . , (1)

where S(r, r′) is defined as S(r, r′) = 〈ρ(r)ρ(r′)〉 − 〈ρ(r)〉〈ρ(r′)〉 [18]. Results perturbative
in weak disorder are obtained by expanding about the pure limit, in which case 〈ρ0(r)〉 = ρ0,
the average fluid density. The density ρ(r) can be generated if the appropriate correlations
〈ρ(r)ρ(r′)〉 and 〈ρ(r)〉〈ρ(r′)〉 are available. To lowest order these are the correlations of the
pure system. The results can be extended to larger disorder (a non-trivial initial 〈ρ0(r)〉)
provided accurate values of S(r, r′) computed in the disordered background are available.
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Fig. 2 – Plot (color online) of the configuration averaged density ρ(r) for a single disorder configuration
(see fig. 1(a)) from a portion of our simulation cell. Plot (a) shows ρ(r) obtained from our Monte
Carlo simulations. The average density ρ0 = 0.9. Plot (b) show the same quantity obtained from
our theory for the corresponding disorder potential and ρ0. (c) Comparison between simulation data
(bold line) and calculated value for ρ(r) along the line y/σ0 = 15 (white line in (a)).

For weak disorder, we may approximate 〈ρ(r)ρ(r′)〉 − 〈ρ(r)〈ρ(r′)〉 by ρ2
0h(|r − r′|), where

h(r) is the pair correlation function of the pure system. At somewhat stronger disorder, an
alternative approach improves on this result by using the disorder renormalized version of
these correlation functions, replacing h(r) above by the function g(1)(r) − g(2)(r) + δ(r)/ρ0.
Here g(1)(r) = [〈ρ(0)ρ(r)〉]/ρ2

0 − δ(r)/ρ0 is the disorder-averaged analog of the radial dis-
tribution function. The analog of an Edwards-Anderson parameter reflecting the corre-
lations of time-averaged density inhomogeneities is the “off-diagonal” distribution function
g(2)(r) = [〈ρ(0)〉〈ρ(r)〉]/ρ2

0. Here, 〈. . .〉 denotes a thermal average for the disordered system
prior to the disorder averaging, while the brackets [. . .] denote an average over disorder.
Thus, in the presence of correlations, the response of the density to a nonzero external

potential (apart from an overall normalization) is given by [18]

〈ρ(r)〉 − ρ0 = −βρ2
0

∫
dr′G(| r − r′ |)Vd

(
r′) − βρ0Vd(r) + . . . , (2)

where G(r) = g(1)(r)− g(2)(r). At this point apart from specifying how g(1)(r) and g(2)(r) are
obtained [3], which we do below, our procedure for obtaining ρ(r) is complete. Using eq. (2) we
may obtain the density (fig. 2(b)) from the potential (fig. 1(a)) or, by using a Fourier transform
to invert eq. (2), obtain the disorder potential (fig. 1(b)) from the “experimental” density
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(fig. 2(a)). In principle, inversion of the density to obtain Vd(r) requires the specification of
g(2)(r) which itself depends on Vd(r). In practice, a simple iteration starting from pure system
correlations converges rapidly.
Our calculation of g(1)(r) and g(2)(r) is based on an early replica-based approach to the

calculation of correlation functions in a disordered fluid [3]. The replica method is applied to
the partition function of a system of classical particles interacting via the Hamiltonian Hint.
The quenched, random, one-body potential Vd(r) is drawn from a Gaussian distribution of
zero mean and short-ranged correlations: [Vd(r)Vd(r′)] = K(| r − r′ |). One then notes that
the replicated partition function resembles the partition function of a system of n “species” of
particles, each labeled by an appropriate replica index, interacting via a two-body interaction
which depends both on particle coordinates (ri, rj) and replica indices (α, β). This system of
n species of particles is considered to be an n-component mixture [18]. Taking the n → 0 limit
in the Ornstein-Zernike (OZ) equations governing the properties of the mixture and assuming
replica symmetry, yields the following coupled set of equations, in Fourier space, coupling the
pair correlation functions h(1) and h(2) to the appropriate direct correlation functions C(1)

and C(2):

h(1)(k) =
C(1)(k)− [C(1)(k)− C(2)(k)]2

[1− C(1)(k) + C(2)(k)]2
, (3)

h(2)(k) =
C(2)(k)

[1− C(1)(k) + C(2)(k)]2
.

The Fourier transforms involved are defined as φ(k) = ρ0

∫
drφ(r) exp[−ik · r]. The

replicated OZ relations must be supplemented with specific closures. Previous work applied
to the problem of flux-lattice melting [19] in the presence of quenched point pinning used
the simplest such closure, the Hyper-Netted Chain (HNC) closure [3]. Our best results are
obtained with a closure scheme due to Rogers and Young (RY) [20] for pure systems:

C(1)(r) = exp
[ − β

(
V (1)(r) + V (2)(r)

)]X (r)− 1− Y (1)(r), (4)

C(2)(r) = −βV (2)(r), (5)

where X (r) = 1+(exp[Y (1)(r)f(r)]−1)/f(r) and the function f(r) = 1−exp[−α r] interpolates
between HNC and Percus-Yevick (PY) values for large (small) r and α the “switching” param-
eter is chosen so as to enforce thermodynamic consistency. Here Y (ν)(r) ≡ h(ν)(r)− C(ν)(r),
ν = 1, 2. The pair interaction potential is V (1)(r) and the off-diagonal potential V (2)(r) is the
disorder-averaged correlation function of the disorder potential Vd(r). The integral equations
for the liquid-state correlations as given above must be solved numerically [3, 19,21].
The correlation function g(1)(r) obtained from self-consistent solutions of the integral equa-

tions is qualitatively similar to that for the pure case at low and intermediate levels of disorder.
At large values of disorder, a disorder-induced suppression of structure in g(1)(r) is clearly
apparent. This is shown in fig. 3(a) which exhibits the quantity ∆g(1)(r) = g(1)(r) − g(r),
the difference between the pair distribution function in the disordered and pure cases. A
direct comparison to the simulation data is shown in fig. 3(b). We find that while HNC and
PY respectively under- and over-estimate [18] correlations, the RY closure gives very good
agreement with our simulations. (This is consistent with results for the pure system.) The
parameter α in the latter is taken to be its pure system value of 0.3, a value which agrees best
with simulation data over the full range of densities and disorder strengths.
We show the off-diagonal correlation function g(2)(r) at σ2 = 0.01 for ρ0 = 0.05, 0.3 and

0.9 in fig. 4(a). In the simulations, this correlation function is computed by extracting the
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Fig. 3 – (a) Plot of ∆g(1)(r) for a single density ρ0 = 0.9 and σ2 = 1.0. (b) Comparison of g(1)(r)
from simulation data (MC) with the results of HNC, PY and RY closures. Ten disorder configurations
were used in the averaging.

correlations of the local time-averaged density in a particular configuration of disorder and
then averaging over several disorder realizations. Correlations increase with increasing density
as expected, as manifest in the oscillations of g(2)(r). For the same reason, the off-diagonal
correlations for any density also increase with the strength of the disorder correlator (fig. 4(b)).
In both cases, our theoretical estimates based on the RY closure agree to good accuracy with
correlation functions obtained from the simulations.
We list the following limitations of our technique: First, ρ(r) must be accurately deter-

mined from experimental pictures for correlations to be obtained correctly. (Interestingly, the
size of the probe particles do not impose any theoretical limit [22] on the spatial resolution
of Vd(r) —this is limited only by the accuracy with which ρ(r) can be imaged.) Second, our
analysis neglects higher-order density-density correlations and is thus perturbative in char-
acter. Finally, at high disorder strengths and strong correlations, the possibility exists of a
transition into a state in which replica symmetry is broken, a transition which would not be
captured in this calculation [23].
Any experiment in which repeated instantaneous “snapshots” of the system are taken,

with sufficient statistics to generate equilibrum averages, should yield results which can be
addressed by these methods. Correlations generated from particle coordinates within each
such snapshot can be averaged over snapshots to obtain g(1)(r), whereas averaging over a large
number of snapshots at each space point yields both the time-averaged local density 〈ρ(r)〉 and
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Fig. 4 – (a) Plot of g(2)(r) comparing simulations (points) and result from the RY closure (lines) for
densities ρ0 = 0.05 (+), 0.3 (�) and 0.9 (✷) for σ2 = 0.01. Ten disorder configurations were used in
the averaging. (b) Plot of g(2)(r) —simulations and theory (RY) for σ2 = 0.01 (+), 0.1 (�) and 1 (✷)
for ρ0 = 0.9.
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its space-averaged correlation function g(2)(r). For vortices in superconducting films, scanning
tunneling spectroscopy [24, 25], magneto-optic imaging [12] and Lorentz and magnetic force
microscopy [26, 27] can all yield such snapshots. Magnetic bubble domain arrays are another
experimental system in which many of the features described here should be accessible [8].
We note that several recent experiments directly access the configurations of a large number

of colloidal particles confined to two dimensions [28–31]. As argued here, a monolayer of
interacting colloidal particles moving on a disordered substrate can exhibit interesting and
non-trivial correlations which have not hitherto been characterized. Experimental work in
this direction should be possible and would be very welcome.
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