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The glass transition and liquid-gas spinodal boundaries
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Abstract. – A liquid can exist under conditions of thermodynamic stability or metastability
within boundaries defined by the liquid-gas spinodal and the glass transition line. The relation-
ship between these boundaries has been investigated previously using computer simulations,
the energy landscape formalism, and simplified model calculations. We calculate these stability
boundaries semi-analytically for a model glass-forming liquid, employing accurate liquid-state
theory and a first-principles approach to the glass transition. These boundaries intersect at a
finite temperature, consistent with previous simulation-based studies.

When a substance is brought below its equilibrium freezing temperature and yet main-
tained in the liquid state, it is referred to as a supercooled liquid. Even if crystallization is
avoided a liquid cannot be supercooled indefinitely; it transforms into an amorphous solid via
the glass transition, at a temperature determined in experiments by the cooling rate. The
ideal glass transition refers to the putative transformation to an amorphous solid which has
been argued to occur in the limit of infinitesimally small cooling rates. Such a transition would
define an ultimate limit beyond which a substance cannot exist in the supercooled liquid state.

If a liquid were instead to be heated beyond the boiling point —and the transformation into
the gas phase averted— it is termed a superheated liquid. Such a liquid cannot be superheated
to arbitrarily high temperatures since growing density fluctuations will trigger a catastrophic
transformation into the gaseous state at rates which increase with the degree of superheating.
Mean-field theory identifies a degree of superheating for which the compressibility diverges,
at which point the liquid would spontaneously transform into a gas. The locus of such points
defines another ultimate limit to the stability of the liquid state, the liquid-gas spinodal [1].
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Clarifying the relationship between these two limits is fundamental to a deeper under-
standing of the liquid state. In a previous investigation [2] of the model liquid studied in
this letter, through computer simulations and the energy landscape approach, it was found
that the glass transition line and the liquid-gas spinodal intersect at a finite temperature,
thus predicting a glass-gas limit of mechanical stability at lower temperatures. More recently,
similar results have been obtained from simulations of a model of ortho-terphenyl [3] as well
as calculations based on model energy landscapes [4, 5].

In addition to conventional materials in the liquid state, much interest has recently focussed
on such questions in the context of colloidal fluids. In these systems, a unified picture of ar-
rested states (colloidal gels and glasses) has been the subject of considerable investigation [6].
Depending on the colloidal concentration, the strength and the nature of the interaction,
structural arrest may arise in a variety of ways. These include the aggregation of clusters
at low concentrations and strong interactions, gelation, a glass transition at high densities,
a glass transition arising from attractive rather than repulsive interactions, and finally as a
consequence of phase separation [7–13]. The understanding of the role of the unstable region
in the phase diagram demarcated by the liquid-gas and gas-liquid spinodals is therefore a nec-
essary component of a comprehensive picture of these arrested states [11]. Results presented
in [2] and here, thus, have a direct bearing on the interplay of phase separation and structural
arrest in colloidal fluids, in addition to corresponding phenomena in molecular glass formers.

In this letter, we describe an analysis of these limiting lines for a realistic glass former,
which uses i) accurate liquid-state theoretical methods to calculate the equation of state [14]
of the system, and thus the liquid-gas spinodal, coupled with ii) a first-principles approach
to the glass transition proposed by Mezard and Parisi [15,16] to evaluate the glass transition
line. Our calculations are quantitatively in reasonable agreement with the previous study, and
also predict that the glass transition line and the liquid-gas spinodal intersect at a finite tem-
perature. Our results thus provide strong support for the proposal that such an intersection
of these limiting lines is the generic behavior for liquids.

The model system we study is the Kob-Andersen binary-mixture Lennard-Jones (KA
BMLJ) liquid [17], consisting of an 80 : 20 mixture of A and B particles interacting via a
Lennard-Jonnes potential with parameters εAB/εAA = 1.5, εBB/εAA = 0.5, σAB/σAA = 0.8,
σBB/σAA = 0.88. We report energies in units of εAA, lengths in units of σAA, and tempera-
tures in units of εAA/kB . This system has been extensively studied as a model glass former.
Our procedure for calculating the glass transition line, which we summarize below, is close to
that employed in refs. [18,19].

We compute the equation of state of the system we study, KA BMLJ, from evaluation of
the A-A, A-B and B-B pair correlation functions. Liquid-state theoretical methods provide
accurate analytic tools for the computation of such pair correlation functions and we exploit
such methods here. Our calculations use the Zerah-Hansen (ZH) closure scheme [14] coupled
to the Ornstein-Zernike (OZ) equation. The Zerah-Hansen closure interpolates between hyper-
netted chain (HNC) and the soft-core mean-spherical approximation (SMSA) closures [20]; as
described in ref. [18], such an interpolation reproduces thermodynamic quantities (energy and
pressure) accurately.

For the binary system, with indices a and b indicating particle types, the OZ equation is

hab(k) = cab(k) +
∑

i=a,b

ρicai(k) ∗ hib(k), (1)

where ρi are the partial number densities, hab is defined as gab(r)−1 (gab(r) being the ab pair
correlation function) and cab(r) is the direct correlation function. hab(k), etc. indicate space
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Fourier transforms. Defining γab(r) = hab(r) − cab(r),

γab(k) =
∑

i=a,b

ρicai(k)(cib(k) + γib(k)). (2)

The ZH closure is of the form

cacbρ2gab(r) = exp[−βvab
R (r)] × (3)

×
(

1 +
exp[fab(r)[γab(r) − βvab

A (r)] − 1
fab(r)

)
,

where β ≡ 1/kBT , ca and cb are the concentrations of A-type and B-type particles, respec-
tively, vR and vA are attractive and repulsive contributions of the pairwise potential v, and
are given by vRv(r) − vmin (r ≤ rmin) and vR = 0 (r ≥ rmin); vA = vmin (r ≤ rmin)
and vR = v(r) (r ≥ rmin). The function f provides an interpolation between the SMSA
and the HNC: fab = 1− exp

[
− r

σabα

]
, with α governing the switch between HNC and SMSA.

The parameter α is typically chosen by demanding thermodynamic consistency between equa-
tions of states obtained by the virial and compressibility routes. Other choices, however, are
possible [18], and here we choose the parameter α by comparison with the simulation data
for the studied system in a range of temperature and density values. We find, as expected,
that the value of α that yields the best match of energy and pressure values with those from
simulations varies both with temperature T and density ρ. Based on the estimation of such
α values for a small set of temperature and density values, we choose a linear functional form
for the β- and ρ-dependence of α, α(ρ, T ) = 11.17 − 11.7ρ + 6.65β, which allows us to obtain
quantitatively good results for thermodynamic quantities.

We solve the OZ equation, along with the ZH closure, for γab using the procedure outlined
in ref. [21]. Pair correlation functions are obtained first for low density and high temperatures.
The pair correlation functions so obtained are used as initial guesses for the iterative solution
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Fig. 1 – Pressure vs. density isotherms obtained using the Zerah-Hansen scheme (symbols), compared
with the equation of state obtained from fits to the simulation data (lines) for temperatures T = 0.4,
0.5 and 0.6.
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Fig. 2 – Comparison of potential energy obtained using the Zerah-Hansen scheme (lines) with data
from molecular dynamics simulation, shown for densities ρ = 1.1, 1.15, 1.2, 1.25 as a function of the
inverse temperature β.

of the OZ and ZH equations at lower temperatures and higher densities. We require iterative
convergence at the level of 10−9 in

∑
i(gn+1(ri)− gn(ri))2, with n being the iteration number

and i the real-space mesh index.
In fig. 1, we compare isotherms obtained using this scheme for temperatures T =0.4, 0.5, 0.6

with the isotherms derived, in [2], from an empirical equation of state based on simulation data.
Data shown in fig. 1 demonstrate that the equation of state from the present calculations are
in good quantitative agreement with the results in [2]. Figure 2 shows the potential energies
(epot) obtained from the present calculations as a function of T and ρ, along with available
values from computer simulations [2], demonstrating excellent agreement with the simulation
results. The comparisons in figs. 1 and 2 indicate that the pressure and energy values obtained
from the present calculations are quantitatively quite accurate.

In fig. 3, we show the isotherms obtained for temperatures in the range T = 0.4–0.9. We
obtain the location of the spinodal at each temperature from the condition ∂P

∂ρ = 0.
The glass transition temperatures at each density are calculated using the approach pro-

posed by Mezard and Parisi [15, 16, 22, 23], which has been employed to calculate the glass
transition line for the KA BMLJ in [18]. In this calculation, assuming the existence of an expo-
nentially large number of free-energy minima whose degeneracy determines the configurational
entropy or complexity, the thermodynamics of a system of m copies of the system which are
restricted to be in the same free-energy minimum is considered. With the replicas remaining
confined close to each other, the free-energy can be written in terms of their center-of-mass
coordinates and the excursions of individual replicas from the center of mass. Evaluation
of the contribution from the latter is done within approximation schemes pertaining to the
Hessian or potential-energy second-derivative matrix. The configurational entropy is obtained
by differentiating the resulting free energy per replica with respect to their number, in the
limit of m → 1. The resulting expression for the configurational entropy is

Sconf = Sliq − Sglass, (4)
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Fig. 3 – Pressure vs. density isotherms obtained using the Zerah-Hansen scheme for temperatures
varying from T = 0.4 to T = 0.9. The spinodal lines are obtained from the location of the minima
along these isotherms.

where Sliq is the entropy of the liquid, and

Sglass(β) =
3N

2
(1 + log(2π)) − 1

2
〈Tr(log(βM))〉, (5)

where M is the Hessian matrix of the form M(iμ),(jν) = δij

∑
k vμν(ri − rk) − vμν(ri − rj)

with vμν = ∂2v
∂rμ∂rν

. The indices μ and ν run over the coordinates and i, j and k run over
particle indices. The trace is calculated using the harmonic resummation scheme, details of
which (and of the discussion above) can be found in [15, 16, 18]. As in [2, 24], the ideal glass
transition TK is located with the condition Sconf (TK) = 0.

The entropy of the liquid is obtained from the internal energy (e(β) = 3kBT
2 + epot) via

Sliq(β) = So
liq + βeliq −

∫ β

0

dβ′e(β′). (6)

Here So
liq is the entropy of the perfect gas in the infinite-temperature limit and is given by

So
liq = 1 − log(ρ) − calog(ca) − cblog(cb), where ca is the concentration of A particles and cb

is the concentration of B-type particles.
Both Sliq and Sglass require knowledge of the liquid-state pair correlation functions. How-

ever, at low temperatures the liquid integral equations do not converge, and hence extrapo-
lations (of the form aT−2/5 + b for Sliq and a′ + b′ log(T ) for Sglass, based, respectively, on
theoretical predictions for dense liquids [25] and the harmonic approximation to the glass free
energy) are used to obtain Sconf at low temperatures. Figure 4 shows the configurational
entropy vs. T for ρ = 1.0, 1.05, 1.1, 1.15, 1.20.

The liquid-gas spinodal and the glass transition lines obtained are shown in fig. 5, along
with results from earlier work [2]. Our results reproduce the features observed in earlier
work both qualitatively and, to a good extent, quantitatively, thus providing support for the
general applicability of this approach. The calculated spinodal temperatures are in reasonable
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Fig. 4 – Configurational entropy Sconf for densities ρ = 1.0, 1.05, 1.10, 1.15, 1.20 are shown. For low
temperatures the Sconf is obtained via an extrapolation shown by the dashed lines. The Kauzmann
temperature is identified with the temperature at which the configurational entropy vanishes.
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Fig. 5 – Limits of stability of the liquid phase from present work —spinodal labeled Ts and glass
transition labeled TK— compared with previous work [2]: (circles) spinodal estimated from inverse
compressibility (the dashed line is a guide to the eye), (solid line) from the empirical equation of state,
and (long-dashed line) glass transition line from energy landscape approach. The present calculation
of the spinodal agrees quite well with that from the empirical equation of state, while the glass
transition temperatures are seen to be slightly overestimated. The two limiting lines intersect at
ρ ∼ 0.95, as compared to ρ ∼ 1.08 from earlier work. (The intersection density in [2] is 1.02 if the
spinodal estimate from the empirical equation of state is used instead of the simulation estimates, a
number closer to the one obtained from our present calculations.)
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agreement with the ones estimated earlier from the empirical free energy. The glass transition
temperatures obtained here are slightly higher than those estimated in previous work; this
may be a consequence of the approximations involved in evaluating the glass entropies in
the present case.

Together with previous work [2–5], these results lend strong support to the scenario that
the liquid-gas spinodal and the glass transition line should typically intersect at a finite low
temperature. Unlike previous work, where the results were based either on simulations, or
on assumed model energy landscapes, our calculations describe a realistic-model glass former,
whose properties are evaluated within a self-contained and accurate framework. We believe
that the approach used here and its extensions may be useful in understanding arrested states
in contexts similar to the one we study.

∗ ∗ ∗

The authors acknowledge support from the DST (India). SSA would like to thank
P. Verrochio for useful discussions.

REFERENCES

[1] Debenedetti P. G., Metastable Liquids: Concepts and Principles (Princeton University Press,
Princeton, NJ) 1996.

[2] Sastry S., Phys. Rev. Lett., 85 (2000) 590.
[3] La Nave E., Mossa S., Sciortino F. and Tartaglia P., J. Chem. Phys., 120 (2004) 6128.
[4] Speedy R. J., J. Phys. Condens. Matter, 15 (2003) S1243.
[5] Shell M. S. and Debenedetti P. G., Phys. Rev. E, 69 (2004) 051102.
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