
1

Are Short Proofs Narrow? QBF Resolution Is Not So Simple

OLAF BEYERSDORFF and LEROY CHEW, School of Computing, University of Leeds,

United Kingdom

MEENA MAHAJAN and ANIL SHUKLA, The Institute of Mathematical Sciences (HBNI),

Chennai, India

The ground-breaking paper “Short Proofs Are Narrow – Resolution Made Simple” by Ben-Sasson and Wigder-

son (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds:

to show a lower bound for the width of proofs. Another important measure for resolution is space, and in

their fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space

again can be obtained via lower bounds for width.

In this article, we assess whether similar techniques are effective for resolution calculi for quantified

Boolean formulas (QBFs). There are a number of different QBF resolution calculi like Q-resolution (the classi-

cal extension of propositional resolution to QBF) and the more recent calculi ∀Exp+Res and IR-calc. For these

systems, a mixed picture emerges. Our main results show that the relations both between size and width and

between space and width drastically fail in Q-resolution, even in its weaker tree-like version. On the other

hand, we obtain positive results for the expansion-based resolution systems ∀Exp+Res and IR-calc, however,

only in the weak tree-like models.

Technically, our negative results rely on showing width lower bounds together with simultaneous up-

per bounds for size and space. For our positive results, we exhibit space and width-preserving simulations

between QBF resolution calculi.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-

merical Algorithms and Problems—Complexity of proof procedures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Proof complexity, QBF, resolution, lower bound techniques, simulations

ACM Reference format:

Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2017. Are Short Proofs Narrow? QBF Reso-

lution Is Not So Simple. ACM Trans. Comput. Logic 19, 1, Article 1 (December 2017), 26 pages.

https://doi.org/10.1145/3157053

1 INTRODUCTION

The main objective in proof complexity is to obtain precise bounds on the size of proofs in various
formal systems, and this objective is closely linked to and motivated by foundational questions

This work was supported by the EU Marie Curie IRSES grant CORCON, grant no. 48138 from the John Templeton Foun-

dation, EPSRC grant EP/L024233/1, and a Doctoral Training Grant from EPSRC (second author).

A preliminary version of this article appeared in the proceedings of the conference STACS’16 (Beyersdorff et al. 2016).

Authors’ addresses: O. Beyersdorff and L. Chew, School of Computing, University of Leeds, Leeds, LS2 9JT, UK; emails:

{O.Beyersdorff, mm12lnc}@leeds.ac.uk; M. Mahajan and A. Shukla, Institute of Mathematical Sciences, IV Cross Road, CIT

Campus, Taramani, Chennai 600 113, Tamil Nadu, India; emails: {meena, anilsh}@imsc.res.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1529-3785/2017/12-ART1 $15.00

https://doi.org/10.1145/3157053

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

https://doi.org/10.1145/3157053
https://doi.org/10.1145/3157053

1:2 O. Beyersdorff et al.

in computational complexity (Cook’s program), first-order logic (separating theories of bounded
arithmetic), and SAT solving. In particular, propositional resolution is one of the best-studied and
most important propositional proof systems, as it forms the backbone of modern SAT solvers
based on conflict-driven clause learning (CDCL) (Marques-Silva et al. 2009). Complexity lower
bounds for resolution proofs directly translate into lower bounds on the performance of SAT
solvers (Sabharwal 2005; Buss 2012).

What is arguably even more important than showing these actual bounds is to develop general

techniques that can be applied to obtain lower bounds for important proof systems. A number of
ingenious techniques have been designed to show lower bounds for the size of resolution proofs,
among them feasible interpolation (Krajíček 1997), which applies to many further systems. In their
pioneering paper, Ben-Sasson and Wigderson (2001) showed that resolution size lower bounds can
be elegantly obtained by showing lower bounds to the width of resolution proofs. Here, the size
of a proof denotes the number of its clauses, and the width of a proof is the length of the biggest
clause in it. Indeed, the discovery of this relation between width and size of resolution proofs was
a milestone in our understanding of resolution, and today many if not most lower bounds for
resolution are obtained via the size-width technique.

Another important measure for resolution is space (Esteban and Torán 2001), as it corresponds
to memory requirements of solvers in the same way that resolution size relates to their running
time. Informally, the space complexity for refuting a formula in resolution is the minimum number
of clauses that must be kept in memory simultaneously to refute the formula. In their fundamental
work, Atserias and Dalmau (2008) demonstrated that also space is tightly related to width. Indeed,
showing lower bounds for width serves again as the primary method to obtain space lower bounds.
Since these discoveries, the relations between resolution size, width, and space have been subject
to intense research (cf. Beyersdorff and Kullmann (2014)), and in particular sharp tradeoff results
between the measures have been obtained (cf., e.g., Beame et al. (2012), Ben-Sasson and Nordström
(2011), and Nordström (2013)).

In this article, we initiate the study of width and space in resolution calculi for quantified Boolean
formulas (QBFs) and address the question of whether similar relations between size, width, and
space as for classical resolution hold for QBF calculi. Quantified Boolean formulas are propositional
formulas where each variable is quantified with either an existential or a universal quantifier.
Before explaining our results, we sketch recent developments in QBF proof complexity.

QBF proof complexity is a relatively young field studying proof systems for quantified Boolean
logic. As in the propositional case, one of the main motivations for the field comes via its inti-
mate connection to solving. Although QBF solving is at an earlier state than SAT solving, it offers
great potential. Due to its PSPACE completeness, QBF allows for more succinct encodings and
therefore QBF solving applies to further fields such as formal verification or planning (Rintanen
2007; Benedetti and Mangassarian 2008; Egly et al. 2017). Each successful run of a solver on an
unsatisfiable instance can be interpreted as a proof of unsatisfiability; this connection turns proof
complexity into the main theoretical tool to understand the performance of solving. As in SAT,
many QBF solvers implement decision procedures that have resolution (and its variants) as their
underlying proof system.

However, compared to SAT, the QBF picture is more complex as there exist two main solving
approaches: (1) utilizing ideas from conflict-driven clause learning (CDCL), e.g., in the QBF solver
DepQBF (Lonsing and Biere 2010; Lonsing and Egly 2017), and (2) using expansion of universal
variables, e.g., in the QBF solver RAReQS (Janota et al. 2016). To model the strength of these QBF
solvers, a number of resolution-based QBF proof systems have been developed. Q-resolution (Q-

Res) by Kleine Büning, Karpinski, and Flögel (1995) forms the core of the CDCL-based systems. To
capture further ideas from CDCL solving, Q-Res has been augmented to long-distance resolution

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:3

(Zhang and Malik 2002; Balabanov and Jiang 2012), universal resolution (Van Gelder 2012), and
their combinations (Balabanov et al. 2014). Powerful proof systems for expansion-based solving
were recently developed in the form of∀Exp+Res (Janota and Marques-Silva 2015) and the stronger
IR-calc and IRM-calc (Beyersdorff et al. 2014).

In this article, we concentrate on the three QBF resolution systems, Q-Res, ∀Exp+Res, and IR-

calc. This choice is motivated by the fact that Q-Res and ∀Exp+Res form the base systems for
CDCL and expansion-based solving, respectively, and IR-calc unifies both approaches in a natural
way, as it simulates both Q-Res and ∀Exp+Res (Beyersdorff et al. 2014). Recent findings show that
CDCL and expansion are indeed orthogonal paradigms as Q-Res and ∀Exp+Res are incomparable
with respect to simulations (Beyersdorff et al. 2015).

Understanding which lower-bound techniques are effective in QBF proof complexity is of
paramount importance for progress in the field. Beyersdorff et al. (2017) showed that the feasible
interpolation technique of Krajíček (1997), transferring (monotone) circuit-size lower bounds to
proof-size lower bounds, applies to all QBF resolution systems. Another successful transfer of a
classical technique was obtained by Beyersdorff et al. (2017) for a game-theoretic characterization
of proof size in tree-like Q-Res.

Our Contributions

The central question we address here is whether lower-bound techniques via width, which have
revolutionized classical proof complexity, are also effective for QBF resolution systems.

Though space and width have not been considered in QBF before, these notions straightfor-
wardly apply to QBF resolution systems. However, due to the ∀-reduction rule in Q-Res allowing
removal of universal variables from clauses (under certain side conditions), it is relatively easy
to enforce that universal literals accumulate in clauses of Q-Res proofs, thus always leading to a
large width, irrespective of size and space requirements (Lemma 3.6). This prompts us to consider
existential width—counting only existential literals—as an appropriate width measure in QBF. This
definition aligns both with Q-Res, which only resolves on existential variables, and with ∀Exp+Res

and IR-calc, which like all expansion systems only operate on existential literals.

1. Negative results. Our main results show that the size-width relation of Ben-Sasson and
Wigderson (2001) and the space-width relation of Atserias and Dalmau (2008) dramatically fail for
Q-Res in the sense that there exist formulas requiring maximal (linear) width, but allowing for
proofs of minimal (polynomial) size and minimal (constant) space. This even holds when consid-
ering the tighter existential width.

We first notice that the proof establishing the size-width result of Ben-Sasson and Wigder-
son (2001) almost fully goes through, except for some very inconspicuous step that fails in QBF
(Proposition 4.1). But not just the technique fails: we prove that Tseitin transformations1 of for-
mulas expressing a natural completion principle2 of Janota and Marques-Silva (2015) have small
size and space, but require large existential width in tree-like Q-Res (Theorem 4.2), thus refuting
the size-width relation for tree-like Q-Res as well as the space-width relation for general dag-like
Q-Res.

As the number of variables in the formulas for the completion principle is quadratic in their
refutation width, these formulas do not rule out size-width relations in general Q-Res. However,
we show that a different set of formulas, hard for tree-like Q-Res (Janota and Marques-Silva 2015),
provide counterexamples for size-width relations in full Q-Res (Theorem 4.9).

1Tseitin transformations are a standard technique to transform arbitrary propositional formulas into 3-CNFs by using

additional variables. Here we use the fact that they produce constant-width formulas.
2The completion principle expresses a simple game between two players on a matrix; cf. Section 4.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:4 O. Beyersdorff et al.

Technically, our main contributions are width lower bounds for the above formulas, which we
show by careful counting arguments. We complement these results by existential-width lower
bounds for parity formulas of Beyersdorff et al. (2015), providing an optimal width separation
between Q-Res and ∀Exp+Res (Theorem 5.6).

2. Positive results and width-space-preserving simulations. Though the negative picture
above prevails, we prove some positive results for size-width-space relations for tree-like versions
of the expansion resolution systems∀Exp+Res and IR-calc. Proofs in∀Exp+Res can be decomposed
into two clearly separated parts: an expansion phase followed by a classical resolution phase.
This makes it easy to transfer almost the full spectrum of the classical relations to ∀Exp+Res

(Theorem 6.1).
To lift these results to IR-calc (Theorem 6.2), we show a series of careful space- and width-

preserving simulations between tree-like Q-Res, ∀Exp+Res, and IR-calc. In particular, we show
the surprising result that tree-like ∀Exp+Res and tree-like IR-calc are polynomially equivalent
(Lemma 5.3), thus providing a rare example of two proof systems that coincide in the tree-like,
but are separated in the dag-like, model (Beyersdorff et al. 2015). The only other such example
that we are aware of is regular resolution versus full resolution (although this is perhaps slightly
less natural as regular resolution is just a subsystem of resolution). In addition, our simulations
provide a simpler proof for the simulation of tree-like Q-Res by ∀Exp+Res (Corollary 5.5), shown
by Janota and Marques-Silva (2015) via a substantially more involved argument.

Our last positive result is a size-space relation in tree-like Q-Res (Theorem 6.2), which we show
by a pebbling game analogous to the classical relation by Esteban and Torán (2001). Not surpris-
ingly, this only positive result for Q-Res avoids any reference to the notion of width.

We highlight that throughout this article, we deal with QBF resolution systems that can only
resolve existential variables, a restriction that is crucial for some of our results. This condition
holds for the base systems Q-Res and ∀Exp+Res as well as the stronger system IR-calc. To clar-
ify, the size-width relation for QBF resolution systems like QU-Res of Van Gelder (2012), which
allow resolution steps on universal variables, remains an open problem (cf. also the discussion in
Section 7).

As the bottom line, we can say that QBF proof complexity is not just a replication of classical
proof complexity: it shows quite different and interesting effects as we demonstrate here. Espe-
cially for lower bounds, it requires new ideas and techniques. We remark that in this direction, a
new and “genuine QBF technique” based on strategy extraction was recently developed, showing
lower bounds for Q-Res (Beyersdorff et al. 2015) and indeed much stronger systems (Beyersdorff
et al. 2016; Beyersdorff and Pich 2016).

Organisation of the Article

The remainder of this article is organized as follows. We start by reviewing background informa-
tion on classical and QBF resolution systems (Section 2), including definitions of size, space, and
width, together with their main classical relations (Section 3). In Section 4, we prove our main
negative results on the failure of the transfer of the classical size-width and space-width results to
QBF. Section 5 contains the simulations between tree-like versions of Q-Res, ∀Exp+Res, and IR-

calc, paying special attention to width and space. This enables us to show in Section 6 the positive
results for relations between size, width, and space in these systems. We conclude in Section 7
with a discussion and directions for future research.

2 NOTATIONS AND PRELIMINARIES

We assume familiarity with basic notions from logic, including propositional and quantified
Boolean logic. We just review those concepts here that are subsequently needed, also setting the

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:5

notation for later sections. For background information and a rigorous syntactic and semantic
definition of the logics, we refer to the monograph of Kleine Büning and Lettmann (1999).

Quantified Boolean Formulas. A literal is a Boolean variable or its negation. We say a literal x is
complementary to the literal ¬x and vice versa. A clause is a disjunction (∨) of literals and a term

is a conjunction (∧) of literals. The empty clause is denoted by �, and is semantically equivalent
to false. A propositional formula in conjunctive normal form (CNF) is a conjunction of clauses. For
a literal l = x or l = ¬x , we write var(l) for x and extend this notation to the set var(C) of variables
of a clause C .

A partial assignment α for a set of variables X is a partial function α : X → {0, 1}. We say that
a variable x is assigned a value in α if x is in the domain of α , denoted x ∈ dom(α). We denote an
assignment b ∈ {0, 1} to a single variable x by the notation x/b. A partial assignment α is specified
as a set of such singleton assignments, e.g., {x1/0,x3/1}.

Let α be any partial assignment. For a clauseC , we writeC |α for the clause obtained by applying
the partial assignment α toC . That is, we remove literals falsified by α fromC , and further, if some
literal ofC is true under α , thenCα is the tautological clause 1. For example, applying α = {x1/0} to
the clause C = (x1 ∨ x2 ∨ x3) yields C |α = (x2 ∨ x3), and applying α ′ = {x1/1} to the same clause
gives C |α ′ = 1. We say that a partial assignment α satisfies a clause C if C |α = 1, and it satisfies a
CNF formula F if it satisfies each of the clauses of F .

Let A,B be propositional formulas. We say that A |= B holds if any (partial) assignment that sat-
isfiesA also satisfiesB. Let F be a CNF formula, and x be a variable in F . Then F |x/1 is a CNF formula
obtained from F by removing all clauses containing the literal x , and removing all occurrences of
the literal ¬x . The CNF formula F |x/0 is similarly defined.

We consider QBFs in closed prenex form with a CNF matrix;3 i.e., we consider the form
Q1x1 · · · Qnxn .ϕ where each Qi is either ∃ or ∀, and ϕ is a quantifier-free CNF formula in the
variables x1, . . . ,xn . Such formulas are succinctly denoted as Q ϕ, where ϕ is called the matrix,
and Q is its quantifier prefix.

Given a variable y, either existentially quantified or universally quantified in Q ϕ, the quantifi-

cation level of y in Q ϕ, lv(y), is the number of alternations of quantifiers y has on its left in the
quantifier prefix of Q ϕ. Given a variable y, we will sometimes refer to the variables with quantifi-
cation level lower than lv(y) as variables left of y; analogously, the variables with quantification
level higher than lv(y) will be right of y.

The semantics of QBFs can be defined via a two-player game between a universal and an exis-
tential player (cf., e.g., Arora and Barak (2009)) or via an inductive truth definition, using that ∀x .F
is equivalent to F |x/0 ∧ F |x/1 and ∃x .F to F |x/0 ∨ F |x/1 (cf. Kleine Büning and Lettmann (1999)).

Resolution Calculi

Resolution (Res), introduced by Blake (1937) and Robinson (1965), is a refutational proof system
for formulas in CNF. The lines in the Res proofs are clauses. Given a CNF formula F , Res can infer
new clauses according to the resolution inference rule:

C ∨ x D ∨ ¬x
C ∨ D (Res).

Here, C,D denote clauses and x is a variable being resolved, called the pivot variable. The clauses
C ∨ x and D ∨ ¬x are referred to as the hypotheses and C ∨ D is the conclusion (resolvent) of the
resolution rule.

3Any QBF can be efficiently (in polynomial time) converted to an equivalent QBF in this form. See, for instance, Arora and

Barak (2009).

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:6 O. Beyersdorff et al.

Fig. 1. The rules of Q-Res (Kleine Büning et al. 1995).

Let F be an unsatisfiable CNF formula. A resolution proof (refutation) π of F is a sequence of
clauses D1, . . . ,Dl , where Dl = �, and each clause in the sequence is either from F or is derived
from some previous clauses of the sequence via the above resolution rule.

We say that a directed acyclic graph (dag) G = (V ,E) represents the refutation π if V =
{D1, . . . ,Dl }, the source nodes are the clauses from F , internal nodes are the derived clauses, and
the empty node Dl is the unique sink. Furthermore, edges in G are from the hypotheses to the
conclusion for each resolution step. That is, each derived clause Di has incoming edges from D j

and Dk , where the indices j,k are less than i , and Di is the resolvent of D j and Dk . (Since a clause
could be derived from more than one set of previous premises, there could be more than one graph
representing π . Similarly, such a graph G represents not just π , but any sequence corresponding
to a topological sort of the nodes ofG.) If there is a tree representing π , we call π a tree-like resolu-
tion proof (ResT) of F . In other words, in a tree-like resolution proof, one cannot reuse the derived
clauses. We call π a regular resolution proof if, in some representation G, on each directed path
in G no variable appears twice as a pivot variable. In what follows, we will refer to any graph G
representing π (and having the desired property of being a tree, or not reusing pivots along a path,
in the case of tree-like and regular proofs, respectively) as the graph Gπ corresponding to π . This
is a slight abuse of notation, but the intended meaning should be clear from the context.

QBF resolution calculi. Q-resolution (Q-Res) by Kleine Büning et al. (1995) is a resolution-like
calculus that operates on QBFs in closed prenex form where the matrix is a CNF. The lines in
Q-Res proofs are clauses. It uses the resolution rule (Res) with the side condition that the pivot
variable is existential and provided that the resolvent clause is not a tautology. That is, fromC ∨ x
and D ∨ ¬x , it can infer C ∨ D provided x is an existential variable and there is no literal � ∈ C
whose negation ¬� is in D.

In addition, Q-Res has a universal reduction rule (∀-Red), which allows dropping a universal
variable literal from a clause provided the clause has no existential variable to the right of the
reduced variable. Note that we also forbid tautological clauses in the input. This is to ensure the
soundness of the system. For example, consider the true formula ∀x . (x ∨ ¬x). The ∀-Red rule on
the formula derives the empty clause, which is unsound. The inference rules of Q-Res are given
in Figure 1.

Similar to tree-like resolution, we have tree-like Q-Res (denoted Q-ResT). To be precise, if the
underlying proof graph of a Q-Res proof is a tree (i.e., no derived clause is used more than once),
then we have a Q-ResT proof.

In addition to Q-Res, we consider two further QBF resolution calculi that have been intro-
duced to model expansion-based QBF solving. The basic idea used in expansion-based QBF solv-
ing is to first expand the universal variables and then apply resolution. For example, consider

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:7

Fig. 2. The rules of ∀Exp+Res (Janota and Marques-Silva 2015).

the QBF ∃x∀y∃z.ϕ (x ,y, z). We can expand the universal variable y and get ∃x .(∃z.ϕ (x , 0, z)) ∧
(∃z.ϕ (x , 1, z)). Observe that z may depend on the universal variable y. Therefore, while convert-
ing this to prenex form, we need two distinct copies of z. Doing so yields an equivalent formula
∃x∃zy/0∃zy/1.ϕ (x , 0, zy/0) ∧ ϕ (x , 1, zy/1). Here zy/0 and zy/1 are two fresh copies of z, which have
been annotated by the reason for their creation. Syntactically, zy/0 and zy/1 are just new, distinct
existential variables.

Inspired by the above idea, two calculi based on instantiation of universal variables were intro-
duced: ∀Exp+Res by Janota and Marques-Silva (2015) and IR-calc by Beyersdorff et al. (2014). Both
calculi operate on clauses that consist of only existential variables from the original QBF, which
are additionally annotated by a substitution to some universal variables, e.g., ¬xu1/0,u2/1. For any
annotated literal lσ , the substitution σ must not make assignments to variables at a higher quan-
tification level than l ; i.e., if u ∈ dom(σ), then u is universal and lv(u) < lv(l). To preserve this
invariant, we use the auxiliary notation l [σ], which for an existential literal l and an assignment σ
to the universal variables filters out all assignments that are not permitted, i.e.,

l [σ] = l {u/c ∈σ | lv(u)<lv(l), c ∈{0,1} } .

We say that an assignment is complete if its domain is the set of all universal variables. Likewise,
we say that a literal xτ is fully annotated if all universal variables u with lv(u) < lv(x) in the QBF
are in dom(τ), and a clause is fully annotated if all its literals are fully annotated.

The calculus ∀Exp+Res of Janota and Marques-Silva (2015) works with fully annotated clauses
on which resolution is performed. This requires, apart from resolution, an axiom download rule
that specifies, for an axiom clauseC , what annotated clause can be used in the proof. The rules of
∀Exp+Res are shown in Figure 2.

We illustrate the axiom download step in ∀Exp+Res with an example: consider a QBF with the
quantifier prefix ∃e1∀u1∃e2∀u2∃e3∀u3 and containing the clause C = (e1 ∨ ¬e2 ∨ u1 ∨ e3 ∨ ¬u3).
Let τ = {u1/0,u2/1,u3/1}. Note that τ is an assignment to all universal variables, which falsifies all

universal literals in C . Then in ∀Exp+Res, the clause (e1 ∨ ¬eu1/0
2 ∨ eu1/0,u2/1

3) can be downloaded
fromC with respect to τ . Likewise, under a different assignment, we could download the clause as

(e1 ∨ ¬eu1/0
2 ∨ eu1/0,u2/0

3).
The resolution rule (Res) of ∀Exp+Res is just the propositional resolution rule. However, the

pivot annotations need to match exactly. This makes sense, as different annotations syntactically
lead to different variables.

In comparison to ∀Exp+Res, the system IR-calc by Beyersdorff et al. (2014) is more flexible. It
uses “delayed” expansion and can mix instantiation with resolution steps. Formally, IR-calc works
with partial assignments on which we use auxiliary operations of completion and instantiation. For
assignments τ and μ, we write τ ◦ μ for the assignmentσ defined asσ (x) = τ (x) if x ∈ dom(τ); oth-
erwise, σ (x) = μ (x) if x ∈ dom(μ). The operation τ ◦ μ is called completion as μ provides values for

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:8 O. Beyersdorff et al.

Fig. 3. The rules of IR-calc (Beyersdorff et al. 2014).

variables not defined in τ . For an assignment τ and an annotated clauseC , the function inst(τ ,C) re-
turns the annotated clause {l [σ◦τ] | lσ ∈ C}. The system IR-calc uses the rules depicted in Figure 3.

Unlike ∀Exp+Res, in an axiom download step in IR-calc, the assignment τ sets values to all uni-
versal variables in the clause being downloaded, but not to other universal variables. For example,
consider the same QBF quantifier prefix and clauseC described above while discussing ∀Exp+Res.

For τ = {u1/0,u3/1}, IR-calc downloads the following clause: (e1 ∨ ¬eu1/0
2 ∨ eu1/0

3). Note that the
universal variable u2 does not belong to the domain of τ , but τ falsifies all universal variables inC .

The resolution rule in IR-calc is exactly as in ∀Exp+Res. Again, pivot annotations need to match
in both parent clauses.

To enable further resolution steps, the system IR-calc allows one to extend the annotations in
the instantiation rule, which uses the function inst discussed above. For instance, in the preceding

example, (e1 ∨ ¬eu1/0
2 ∨ eu1/0

3) can be further instantiated by τ = {u2/0} to (e1 ∨ ¬eu1/0
2 ∨ eu1/0,u2/0

3).

Simulations. Given two proof systems P and Q for the same language (the set of propositional
tautologies, TAUT, or the set of true quantified Boolean formulas, QBFs), P p-simulatesQ (denoted
Q ≤p P) if eachQ-proof can be transformed in polynomial time into a P-proof of the same formula.
Two systems are called p-equivalent if they p-simulate each other.

Beyersdorff et al. (2014) have shown that IR-calc p-simulates both Q-Res and ∀Exp+Res, while
Beyersdorff et al. (2015) show that Q-Res and ∀Exp+Res are incomparable; i.e., IR-calc is exponen-
tially stronger than both Q-Res and ∀Exp+Res. However, ∀Exp+Res can p-simulate Q-ResT (Janota
and Marques-Silva 2015).

3 SIZE, WIDTH, AND SPACE IN RESOLUTION CALCULI

The purpose of this section is twofold: first, to review the measures’ size, width, and space and
their relations in classical resolution, and second, to explain how to apply these measures to QBF
resolution systems. While this is straightforward for size and space, we need a more elaborate
discussion on what constitutes a good notion of width for QBF resolution systems.

3.1 Defining Size, Width, and Space for Resolution

For a CNF F , |F | denotes the number of clauses in it. We extend the same notation to QBFs with a
CNF matrix.

For P one of the resolution calculi Res, Q-Res,∀Exp+Res, IR-calc, let π P F (π PT
F , respectively)

denote that π is a P-proof (tree-like P-proof, respectively) of the formula F . For a proof π of F in
system P , its size |π | is defined as the number of clauses in π . The size complexity S (P F) of

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:9

deriving F in P is defined as min {|π | : π P F }. The tree-like size complexity, denoted S (PT
F), is

min {|π | : π PT
F }.

A second complexity measure is the minimal width. The width of a clause C is the number of
literals inC , denotedw (C). The width of a CNF F , denotedw (F), is the maximum width of a clause
in F , i.e., w (F) = max{w (C) : C ∈ F }. The width w (π) of a proof π is defined as the maximum
width of any clause appearing in π , i.e.,w (π) = max{w (C) : C ∈ π }. The widthw (P F) of refuting
a CNF F in P is defined as min{w (π) : π P F }. Again, the same notation extends to quantified
CNFs.

Note that for width in any calculus, whether the proof is tree-like or not is immaterial, since
a proof can always be made tree-like by duplication without increasing the width. We therefore
drop the T subscript when talking about proof width.

The third complexity measure for resolution calculi is space. For classical resolution, this mea-
sure was first defined by Esteban and Torán (2001). In the literature, it is also called clause space,
to distinguish it from variable space or total space (see, e.g., Ben-Sasson (2002)). We consider only
clause space in this article, and so we call it just space. Informally, space is the minimal number
of clauses that must be kept simultaneously in memory to refute a formula. Instead of viewing
a proof π as a dag, we view it as a sequence σ of CNF formulas σ = F0, F1, . . . , Fs , where F0 = ∅,
� ∈ Fs , and each Fi+1 is obtained from Fi by either erasing some clause downloading an axiom,
or adding a resolvent of clauses in Fi . In the latter case, one of the clauses used in the resolu-
tion may also simultaneously be deleted. The space used by this proof is the maximum number
of clauses in any Fi , i.e., CSpace(σ) = max{|Fi | | i ∈ [s]}. A straightforward way of representing a
proof π = D1, . . . ,Dl in this way is to set Fi = {D j | j ≤ i}; this proof will have space l . But there
could be other ways of representing π that are more economical in space.

The space used by a proof is precisely the number of pebbles required to pebble the proof dag
(cf. also the survey by Nordström (2013)), and we here use the pebbling number as the formal
definition of the space used by the proof. We first define the pebbling game on graphs.

Definition 3.1 (Pebbling Game). Let G = (V ,E) be a connected directed acyclic graph with a
unique sink s , where every vertex of G has at most two incoming edges. The aim of the game
is to put a pebble on the sink of the graph following this set of rules:

(1) A pebble can be placed on any source vertex, that is, on a vertex with no incoming edge.
(2) A pebble can be removed from any vertex.
(3) A pebble can be placed on an internal vertex provided all vertices with an incoming edge

to it are pebbled. In this case, instead of placing a new pebble on it, one can shift a pebble
along an incoming edge to the vertex.

The minimum number of pebbles needed to pebble the unique sink following the above rules is
said to be the pebbling number of G.

Consider the proof graphGπ corresponding to a Q-Res proof π of a false QBF F . InGπ , clauses
are the vertices and edges go from the hypotheses to the conclusion of inference rules (i.e., ∀-Red,
resolution steps). Clearly Gπ is a dag with initial clauses as sources and the empty clause as the
unique sink. Also, each vertex in Gπ is at most two incoming edges. Hence, the pebbling game is
well defined on Gπ .

We now define the space required to refute a false QBF F as the minimum number of pebbles
needed to play the pebble game on the graph of a Q-Res proof of F .

Definition 3.2 (Space in Q-Res). For a false QBF F in prenex form, we set

CSpace(Q-Res F) = min
{
k : ∃Q-Res proof π of F ,Gπ can be pebbled with k pebbles

}
.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:10 O. Beyersdorff et al.

The analogous definition is used for tree-like proofs:

CSpace(Q-ResT
F) = min{k : ∃Q-ResT proof π of F ,Gπ can be pebbled with k pebbles}.

3.2 Relations between Size, Width, and Space in Classical Resolution

We now state some of the main relations between size, width, and space for classical resolution.
We start with the foundational size-width relations of Ben-Sasson and Wigderson (2001).

Theorem 3.3 (Ben-Sasson and Wigderson (2001)). For all unsatisfiable CNFs F in n variables,

the following holds:

S (ResT
F) ≥ 2

w
(

Res F
)
−w (F)

, and

S (Res F) = exp �
�
Ω �
�

(
w

(
Res F

) −w (F)
)2

n
�
�
�
�
.

Space complexity was introduced by Esteban and Torán (2001) and relations between space, size,
and width are explored (cf. also Kullmann (1999) and Beyersdorff and Kullmann (2014)), establish-
ing the size-space relation for tree-like resolution:

Theorem 3.4 (Esteban and Torán (2001)). For all unsatisfiable CNFs F , the following relation

holds: S (ResT
F) ≥ 2CSpace(ResT

F) − 1.

The fundamental relation between space and width for full resolution was obtained by Atserias
and Dalmau (2008).

Theorem 3.5 (Atserias and Dalmau (2008)). For all unsatisfiable CNFs F , the following relation

holds: w (Res F) ≤ CSpace(Res F) +w (F) − 1.

A more direct proof was given recently by Filmus et al. (2015) and shows that w (Res F) ≤
CSpace(Res F) +w (F) − 3.

3.3 Existential Width: What Is the Right Width Notion for QBF?

We wish to explore the possibility of a similar approach as used by Ben-Sasson and Wigderson
(2001) to prove an analog of Theorem 3.3 when dealing with QBFs. The following simple example
shows that the relationships in Theorem 3.3 and Theorem 3.5 do not carry over for the system
Q-Res. For n ∈ N, let [n] denote {1, 2, . . . ,n}.

Consider the following false QBF Fn over 2n + 1 variables:

Fn =∀u1 . . .un∃e0∃e1 . . . en .

C0 : (e0) ∧
For i ∈ [n],Di : (¬ei−1 ∨ ui ∨ ei) ∧

Dn+1 : (¬en).

Proposition 3.6. S (Q-ResT
Fn) = O (n) and CSpace(Q-ResT

Fn) = O (1), but w (Q-Res Fn) =
Ω(n).

Proof Sketch. For the upper bounds, consider the following proof. For i ∈ [n], let Ci = (u1

∨ · · · ∨ ui ∨ ei). For i ∈ [n] in sequence, resolvingCi−1 and Di on variable ei−1 givesCi . Resolving
Cn and Dn+1 on variable en gives the clause U = (u1 ∨ · · · ∨ un). Finally, applying ∀-Red on the
clause U yields the empty clause in n more steps. The proof is depicted in Figure 4.

This is a tree-like proof of size O (n). Further, each resolution step involves an axiom clause, so
at each step we need to pebble just two clauses, and so the space requirement is O (1).

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:11

Fig. 4. Proof of Proposition 3.6: A Q-ResT refutation of the false QBF Fn .

Concerning the width lower bound, by the order of quantification in Fn , every existential literal
in Fn blocks any ∀-reduction. Therefore, in any refutation, when a ∀-reduction is first used, the
clauseC has only universal variables. At this point, the empty clause is derivable fromC by a series
of ∀-reductions. Note that if any clause is dropped from Fn , the resulting QBF is no longer false.
Thus, any refutation must use all clauses. Hence, C must have all universal variables in it; it must
be (u1 ∨ · · · ∨ un) as all ui variables have been accumulated, without being reduced. Then clause
C has width n. �

Noting that w (Fn) = 3, Proposition 3.6 implies that the relationships from Theorem 3.3 and
Theorem 3.5 do not hold for Q-Res and Q-ResT.

As the above example illustrates, it is easy to enforce that universal variables are accumulated
in a clause, thus leading to large width. Hence, the following question naturally arises: can we
obtain size-width or space-width relations by using the tighter measure of only counting existential
variables?

This aligns with the situation in the expansion systems ∀Exp+Res and IR-calc, where clauses
contain only existential variables. In this respect, it is worth noting that the above example indeed
does not demonstrate the failure of the size-width relationship in expansion-based calculi. For
instance, in ∀Exp+Res, a tree-like refutation could download the existential variables of axioms
annotated with ui/0 for i ∈ [n] and generate the empty clause in O (n) steps with width just 2 at
the leaves and 1 at the internal nodes. More formally, consider the assignment τ that assigns 0 to
all universal variables of Fn . In ∀Exp+Res, we can download the following clauses, with respect to
τ :

Cτ
0 : (eu1/0, ...,un/0

0)

For i ∈ [n],Dτ
i :

(
¬eu1/0, ...,un/0

i−1 ∨ eu1/0, ...,un/0
i

)
Dτ

n+1 :
(
¬eu1/0, ...,un/0

n

)
.

Now, the ∀Exp+Res proof of Fn is straightforward: for i ∈ {0, 1, . . . ,n}, let Eτ
i be the unit clause

(eu1/0, ...,un/0
i). Note that Eτ

0 has been downloaded asCτ
0 . For i ∈ [n], in sequence, resolve Eτ

i−1 and

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:12 O. Beyersdorff et al.

Dτ
i on variable eu1/0, ...,un/0

i−1 to derive Eτ
i . Finally, resolve Eτ

n and Dτ
n+1 on variable eu1/0, ...,un/0

n to
derive the empty clause. Clearly, the size and width of this proof are O (n) and O (1), respectively.

Thus, to get a consistent and interesting width measure for QBF calculi, we consider the notion
of existential width that just counts the number of existential literals. This approach is justified
also for Q-Res as the calculus can only resolve on existential variables and rules out the easy
counterexamples above. Formally, we define it as follows.

Definition 3.7. The existential width of a clause C is the number of existential literals in C; we
denote it by w∃ (C). Using w∃ instead of w , we obtain the existential width of a formula w∃ (F), of
a proof w∃ (π), and of refuting a false QBF w∃ (P F).

For the expansion systems ∀Exp+Res and IR-calc, the notions of existential width and width
of a proof coincide. (In particular, distinct annotations of the same existential variable in a single
clause are counted as distinct literals.) Hence, we can drop the ∃ subscript in the width of proofs
in these systems. However, for the width of the input clauses from the QBF under consideration,
there is still a difference between the two measures w and w∃, as the QBF may contain universal
literals.

4 Negative Results: Size-Width and Space-Width Relations Fail in Q-Res

In this section, we show that in the Q-Res proof system, even replacing width by existential width,
the relations to size or space as in classical resolution (Theorems 3.3 and 3.5) no longer hold for
both tree-like and general proofs.

First, we point out where the technique of Ben-Sasson and Wigderson (2001) fails. A crucial
ingredient of their proof is the following statement: if a clauseA can be derived from F |x/1 in width
w , then the clause A ∨ ¬x can be derived from F in width w + 1 (possibly using a weakening rule
at the end). We show that the statement no longer holds in Q-Res.

Proposition 4.1. There are false QBFs Fn , with an existential variable b quantified at the inner-

most level, such that the QBF Fn |b/1 is false and has a small existential-width proof, but to derive ¬b
from Fn requires large existential width in Q-Res. In fact, Fn itself requires large existential width to

refute in Q-Res.

Proof. The QBF Fn is constructed by taking the conjunction of two QBFs with distinct variables.
The first QBF is a very simple one: ∃a∀u∃b . (a ∨ u ∨ ¬b) ∧ (¬a). It is true, but if b is set to 1, it
becomes false. The second QBF is a false QBF of the form ∃�xGn (�x), where Gn are polynomial-
size unsatisfiable CNF formulas over the �x variables, such that Gn needs large width in classical
resolution. One such example is the CNF formula described by Bonet and Galesi (1999), which we
denote as BGn . BGn is an unsatisfiable 3-CNF formula over O (n2) variables with w (Res BGn) =
Ω(n). Now define Fn as

∃�x∃a∀u∃b . (a ∨ u ∨ ¬b) ∧ (¬a) ∧ BGn (�x).

Note that the clauses (a ∨ u ∨ ¬b) ∧ (¬a) contain a contradiction if and only if b = 1. Thus, Fn |b/1

can be refuted with existential width 1 using just these two clauses: a ∀-Red on (a ∨ u) yields a,
which can be resolved with ¬a.

Let us now see how we can derive ¬b from Fn . From clauses a ∨ u ∨ ¬b and ¬a, we can derive
u ∨ ¬b, but now we cannot ∀-reduce u as it is blocked by b. Therefore, we need to expose the
contradiction in BGn , derive the empty clause, and then use weakening to obtain ¬b. Since all the
variables in BGn are existential, Q-Res degenerates to classical resolution, requiring (existential)
width Ω(n).

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:13

Table 1. Completion Principle

a1 a1 · · · a1 a2 a2 · · · a2 · · · · · · an an · · · an

b1 b2 · · · bn b1 b2 · · · bn · · · · · · b1 b2 · · · bn

Since setting a = b = 0 satisfies the first part of the QBF, and since the two parts of the QBF have
disjoint variables, the only way to refute Fn is to expose the contradiction in BGn , and as discussed
above, this requires (existential) width Ω(n). �

The example in the proof of Proposition 4.1 can be made “less degenerate” by interleaving more
existential and universal variables disjoint from �x and putting them in the first QBF. All we need
is that b is quantified existentially at the end, the first QBF is true as a whole but false if b = 1, and
this latter QBF can be refuted in Q-Res with small existential width.

We now show that it is not just the technique of Ben-Sasson and Wigderson (2001) that fails
for Q-Res. No other technique will work either, because the relation from Theorem 3.3 between
size and existential width itself fails to hold. The same example also shows that the relation from
Theorem 3.5 between space and existential width also fails to hold.

We first give an example where the relation for tree-like proofs fails. For this we use formulas
CRn describing a natural completion principle, introduced by Janota and Marques-Silva (2015).4

The formula CRn is as follows:

CRn = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . .bn .

Ci, j : (xi, j ∨ z ∨ ai), i, j ∈ [n]

Di, j : (¬xi, j ∨ ¬z ∨ bj), i, j ∈ [n]

A :
∨

i ∈[n]

¬ai

B :
∨

i ∈[n]

¬bi .

CRn is constructed from a principle called the completion principle. Consider two sets A =
{a1, . . . ,an } and B = {b1, . . . ,bn }, and depict their cross-product A × B as in Table 1.

The following two-player game is played on Table 1. In the first round, player 1 deletes exactly
one cell from each column. In the second round, player 2 chooses one of the two rows. Player 2
wins if the chosen row contains either the complete set A or the set B; otherwise, player 1 wins.
The completion principle states that player 2 has a winning strategy. The false QBF CRn expresses

the notion that player 1 has a winning strategy. For each column [
ai

bj
] of the table (denote this the

(i, j)th column), there is a Boolean variable xi, j . Let xi, j = 0 denote that player 1 “deletes bj ” (i.e.,

keeps ai) from the (i, j)th column, and xi, j = 1 denotes that player 1 keeps bj in the (i, j)th column.
There is a variable z to denote the choice of player 2: z = 0 means “choose top row.” The Boolean
variables ai , bj , for i, j ∈ [n] encode that for the chosen values of all the xk, � , and the row chosen
via z, at least one copy of the element ai and bj , respectively, is kept (e.g., (xi, j ∧ z) ⇒ bj).

It is known that CRn has a proof of size O (n2) in Q-Res, and even in Q-ResT (Mahajan and
Shukla 2016). However, CRn has large existential width (i.e.,w∃ (CRn) = n), and for our next result
we need a formula with constant initial existential width. To achieve this, we proceed similarly as
in the Tseitin transformations; i.e., we introduce 2n + 2 new existential variables (i.e., �y, �p) at the

4These formulas are called CRn in Janota and Marques-Silva (2015); we use the same name.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:14 O. Beyersdorff et al.

innermost level in CRn and replace the two large clauses in CRn by any CNF formula that preserves
their satisfiability. Let CR′n denote the modified formula

CR′n = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . .bn∃y0 . . .yn∃p0 . . .pn .

Ci, j : (xi, j ∨ z ∨ ai), i, j ∈ [n] (1)

Di, j : (¬xi, j ∨ ¬z ∨ bj), i, j ∈ [n] (2)

¬y0 ∧
∧

i ∈[n]

(yi−1 ∨ ¬ai ∨ ¬yi) ∧ yn (3)

¬p0 ∧
∧

i ∈[n]

(pi−1 ∨ ¬bi ∨ ¬pi) ∧ pn . (4)

Note that CR′n has O (n2) variables and w∃ (CR′n) = 3.
We can use these formulas to refute the size-width and space-width relations in Q-ResT.

Theorem 4.2. For the above family of QBFs, CR′n holds S (Q-ResT
CR′n) = nO (1) , w∃ (CR′n) = 3,

CSpace(Q-ResT
CR′n) = O (1), and w∃ (Q-Res CR′n) ≥ n.

Proof. The clauses of CR′n , as described above, are partitioned into four groups. For i ∈ [4],

we call an initial clause C a type (i) clause if it belongs to the ith group. It is clear that from the
type (3) clauses of CR′n , we can derive the large clause A =

∨
i ∈[n] ¬ai of CRn in n + 1 resolution

steps. Similarly, we can derive the large clause B =
∨

i ∈[n] ¬bi of CRn from the type (4) clauses
in n + 1 steps. The proof refuting CRn uses each of these large clauses n times; see below. Thus,
S (Q-ResT

CR′n) ≤ S (Q-ResT
CRn) +O (n2) = O (n2).

We briefly sketch the refutation of CRn of Mahajan and Shukla (2016) to analyze its space re-
quirement. The fragment Wj starts with clause A, successively resolves it with clauses from C∗, j
to get z ∨ x1, j ∨ · · · ∨ xn, j , eliminates z through a ∀-reduction to get X j = (x1, j ∨ · · · ∨ xn, j), then
successively resolvesX j with clauses from D∗, j to getWj = ¬z ∨ bj . It is easy to see thatO (1) space
suffices to construct this fragment. The overall proof starts with the clause B, successively resolves
it withW1,W2, . . . ,Wn (reusing the space to construct successiveWj s), and finally gets ¬z, which
is eliminated through a ∀-reduction. Again, O (1) space suffices. Refer to Figure 5.

Finally, we show that CR′n needs large existential width to refute, i.e., w∃ (Q-Res CR′n) ≥ n.

Let π be a proof in Q-Res, π Q-Res CR′n . List the clauses of π in sequence, π = {D0,D1, . . . ,Ds =

�}, where each clause in the sequence either is a clause from CR′n or is derived from clause(s)
preceding it in the sequence using resolution or ∀-Red. There must be at least one universal re-
duction step in π , since all the initial clauses are necessary for refuting CR′n , some of them contain
universal variables, and the only way to remove a universal variable in Q-Res is by ∀-Red. Let t be
the least index such that in the clause Dt , a ∀-Red step has been performed on the only universal
variable. Without loss of generality, let the universal literal be the positive literal z; the argument

for ¬z is identical. As the existential variables �a, �b, �y, and �p all block the universal variable z, none
of them is present in the clause Dt . We use this fact to show that w∃ (Dt) ≥ n. Our strategy is to
associate some set with each clause in π in a specific way and use the set size to bound existential
width. More formally, we associate a set σ with each clause in π and show that the cardinality of
σ is large for the clause Dt . We further argue that Dt can have a large σ set only if its existential
width is large.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:15

Fig. 5. A Q-ResT refutation of CRn from Mahajan and Shukla (2016).

We associate the following sets with the literals of CR′n and the clauses of π :

σ (z) = ∅ = σ (¬z)
∀i ∈ [n] σ (ai) = [n] \ {i} = {1, . . . ,n} \ {i}
∀i ∈ [n] σ (xi, j) = σ (¬ai) = {i}
∀i ∈ [n] σ (¬yi) = [n] \ [i] = {i + 1, . . . ,n}
∀i ∈ [n] σ (yi) = [i] = {1, . . . , i}
∀j ∈ [n] σ (bj) = [n] \ {j} = {1, . . . ,n} \ {j}
∀j ∈ [n] σ (¬xi, j) = σ (¬bj) = {j}
∀j ∈ [n] σ (¬pj) = [n] \ [j] = {j + 1, . . . ,n}
∀j ∈ [n] σ (pj) = [j] = {1, . . . , j}
∀D ∈ π σ (D) =

⋃
l ∈D

σ (l).

The intuition of defining σ in such a way is simple: for all the initial clauses, we want the
cardinality of the set σ to be large. Observe that for all clauses C ∈ CR′n , σ (C) = [n].

Further, we want that as long as no ∀-Red step has been used, every resolution step must pre-

serve the cardinality of σ . Observe that for variables v in �a, �b, �p, �y, the sets σ (v) and σ (¬v) form a
partition of [n]. This helps us in achieving our second goal as follows: for CR′n , we show that any

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:16 O. Beyersdorff et al.

resolution step, before a ∀-Red step, must use only one of the variables �a, �b, �p, and �y as a pivot
variable. Since the resolvent clause of a resolution rule contains all the literals from the hypothesis
except the literals corresponding to the pivot variables, and the literals corresponding to the pivot
variables form a partition of [n], the second goal follows.

Finally, we want to show that the existential width of the clause Dt is large. Observe that we
have a singleton set σ for the literals xi, j , and ¬xi, j . We show that the clause Dt contains only the
literals corresponding to the xi, j variables (along with the only universal variable being resolved),
and since Dt has a large set (this follows from our second goal), it must have many xi, j variables.

For D ∈ π , let πD be the subdag of π , rooted at D. Consider the subdag πDt
of π . We have the

following observations:

Observation 4.3. πDt
contains at least one type (1) clause as a source; this is because z ∈ Dt , and

the only initial clauses containing z are the type (1) clauses.

Observation 4.4. πDt
does not contain any clause of type (2): as z ∈ Dt , we know that ¬z � Dt .

Therefore, if some type (2) clause is present in this subdag, the only way to remove ¬z is via ∀-Red.

This reduction will take place before the reduction on Dt , contradicting our choice of index t . We also

conclude that the literal ¬z cannot appear anywhere in πDt
.

Observation 4.5. πDt
does not contain any type (4) clause: we know that Dt does not contain �p

and �b variables (because they block z). Any use of type (4) clauses introduces �p variables and possibly

¬b literals. Removing �p variables introduces ¬b literals. But ¬b can be removed only by resolving with

b, which is only in type (2) clauses. We have already seen that type (2) clauses are not present in πDt
.

Observation 4.6. No clause in πDt
contains a literal ¬xi, j , since ¬xi, j are introduced only in type

(2) clauses, which were already ruled out.

Observation 4.7. For any clause C derived solely from type (3) clauses, σ (C) = [n]. This is true

for type (3) clauses by definition of σ . Using only these clauses, the only resolution step possible is

with a y variable as pivot. The claim can be verified by induction on depth: since σ (yi) and σ (¬yi)
partition [n], [n] \ σ (yi) and [n] \ σ (¬yi) also partition [n].

We show that all clauses in πDt
that are descendants of some type (1) clause have large sets

associated with them. In particular, we show:

Claim 4.8. Every clause D in πDt
such that πD contains a type (1) clause has σ (D) = [n].

Deferring the proof briefly, we continue with our argument. From Claim 4.8, we conclude that

σ (Dt) = [n]. Recall that the variables �a, �b, �y, �p and the literals ¬xi, j are not present in Dt . The only
literals left are positive xi, j . These literals are associated with singleton sets, and the variables xi, j

for different values of j give the same singleton set. So we conclude that for each i ∈ [n], there
must be some xi, j ∈ Dt . Hence, w∃ (Dt) ≥ n.

It remains to establish the claimed set size.

Proof of Claim 4.8. We proceed by induction on the depth of descendants of type (1) clauses
in πDt

. The base case is a type (1) clause itself and follows from the definition of σ .
For the inductive step, let D be obtained by resolving (E ∨ r) and (F ∨ ¬r). There are two cases

to consider: both are descendants of some type (1) clauses, or only one of them, say, (E ∨ r), is a
descendant of a type (1) clause. In the former case, by the induction hypothesis, σ (E ∨ r) = [n] and
σ (F ∨ ¬r) = [n]. In the latter case, σ (E ∨ r) = [n] by induction hypothesis, and σ (F ∨ ¬r) = [n]
from the observations above. ((F ∨ ¬r) is not a descendant of any type (1) clause, but it belongs

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:17

to πDt
which has only type (1) and type (3) clauses. So it must be a descendant of only type (3)

clauses, and hence has [n] associated with it.)
Thus, in both cases, we have σ (E ∨ r) = σ (F ∨ ¬r) = [n]. So we have σ (E) ⊇ [n] \ σ (r) and

σ (F) ⊇ [n] \ σ (¬r). Observe that the pivot variable r can only be either an �a or a �y variable.
Thus, σ (r) and σ (¬r) are disjoint, and hence σ (E) ∪ σ (F) = [n]. Thus, σ (D) = σ (E) ∪ σ (F) = [n],
as claimed. �

This completes the proof of the theorem. �

Since tree-like space is at least as large as space, Theorem 4.2 also rules out the space-width
relation for general dag-like Q-Res proofs. However, observe that Theorem 4.2 cannot be used to
show that the size-existential-width relationship for general dag-like proofs fails in Q-Res, because
the QBFs CR′n haveO (n2) variables. However, we show via another example that the relation fails
to hold in Q-Res as well. This example cannot be used for proving Theorem 4.2 because it is known
to be hard for Q-ResT (Janota and Marques-Silva 2015). (Janota and Marques-Silva (2015) show the
hardness for ∀Exp+Res, which implies hardness for Q-ResT, as ∀Exp+Res p-simulates Q-ResT.)

Theorem 4.9. There is a family of false QBFs ϕ ′n inO (n) variables such that S (Q-Res ϕ
′
n) = nO (1) ,

w∃ (ϕ ′n) = 3, and w∃ (Q-Res ϕ
′
n) = Ω(n).

Proof. Consider the following formulas ϕn , also introduced by Janota and Marques-Silva
(2015):

ϕn = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n .∧
i ∈[n]

(
(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧

(∨
i ∈[2n]

¬ci

)
.

We know from Janota and Marques-Silva (2015) that ϕn have polynomial-size proofs in Q-Res

(but require exponential-size proofs in Q-ResT). However, in order to prove Theorem 4.9, we need a
formula with constant initial width. To achieve this, we consider quantified Tseitin transformations
of ϕn ; i.e., we introduce 2n + 1 new existential variables xi at the innermost quantification level in
ϕn and replace the only large clause in ϕn by any CNF formula that preserves satisfiability. Let ϕ ′n
denote the modified formula:

ϕ ′n = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n∃x0 . . . x2n .∧
i ∈[n]

(
(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧ (5)

¬x0 ∧
∧

i ∈[2n]

(xi−1 ∨ ¬ci ∨ ¬xi) ∧ x2n . (6)

Note that w∃ (ϕ ′n) = 3.
We refer to the clauses in Equation (6) as x-clauses. It is clear that from the x-clauses, we can

derive the large clause of ϕn in 2n + 1 resolution steps and get back ϕn . Thus, S (Q-Res ϕ
′
n) ≤

S (Q-Res ϕn) + 2n + 1 = nO (1) .
We now show thatϕ ′n needs large existential width. We follow the same strategy used in proving

Theorem 4.2.
Let π be a proof in Q-Res, π Q-Res ϕ

′
n . List the clauses of π in sequence, π = {D0,D1, . . . ,Ds = �},

where each clause in the sequence is either a clause from ϕ ′n or derived from clause(s) preceding it
in the sequence using resolution or∀-Red. There must be at least one universal reduction step in π ,
since all the initial clauses are necessary for refuting ϕ ′n , some of them contain universal variables,
and the only way to remove a universal variable in Q-Res is by ∀-Red. Let i be the least index

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:18 O. Beyersdorff et al.

such that the clause Di is obtained by ∀-Red on D j for some 0 < i . Since all x variables block all u
variables, D j and Di cannot contain any x variables. We use this fact to show thatw∃ (Di) = Ω(n).
Our strategy is to associate some set with each clause in π in a specific way and use the set size to
bound existential width.

We associate the following sets with the literals of ϕ ′n and the clauses of π :

σ (x0) = ∅
∀i ∈ [2n] σ (xi) = [i] = {1, 2, . . . , i}

σ (¬x0) = [2n]
∀i ∈ [2n] σ (¬xi) = [2n] \ [i] = {i + 1, . . . , 2n}
∀i ∈ [n] σ (ei) = σ (ui) = σ (¬c2i) = σ (c2i−1) = {2i}
∀i ∈ [n] σ (¬ei) = σ (¬ui) = σ (¬c2i−1) = σ (c2i) = {2i − 1}
∀D ∈ π σ (D) =

⋃
l ∈D

σ (l).

Note that for any literal �, σ (�) and σ (¬�) are disjoint. The intuition of defining σ this way is as
in the proof of Theorem 4.2.

For D ∈ π , let πD be the subdag of π , rooted at D.

Claim 4.10. πDi
contains at least one x-clause (axiom clause of type (6)).

Proof. The parent D j of node Di contains a universal variable, which is then removed through
∀-Red to get Di . The universal variables appear only in clauses of type (5) but are blocked by the
c variables in every clause where they appear. Thus, before a reduction is permitted, a c variable
must be eliminated by resolution. Since all c variables appear only positively in type (5) clauses,
some x-clause must be used in the resolution. �

We show that all clauses in πDi
that are descendants of some x-clause have large sets associated

with them. In particular, we show:

Claim 4.11. Every clause D in πDi
such that πD contains an x-clause has σ (D) = [2n].

Deferring the proof briefly, we continue with our argument. From Claim 4.11, we conclude that
σ (Di) = [2n]. Recall that none of the x variables belongs toDi . All other literals are associated with
singleton sets, so Di must contain at least 2n literals in order to be associated with the complete
set [2n]. Since Q-Res proofs prohibit a variable and its negation in the same clause, at most n of
the literals in Di can be universal variables. Thus, Di has at least n existential literals, and hence
w∃ (Di) = Ω(n).

It remains to establish the claimed set size.

Proof of Claim 4.11. We proceed by induction on the depth of descendants of x-clauses in πDi
.

The base case is an x-clause itself and follows from the definition of σ .
For the inductive step, let D be obtained by resolving (E ∨ z) and (F ∨ ¬z). There are two cases

to consider:
Case 1: Both (E ∨ z) and (F ∨ ¬z) are descendants of x-clauses (not necessarily the same x-

clause). Then, by induction, σ (E ∨ z) = σ (F ∨ ¬z) = [2n]. So σ (E) ⊇ [2n] \ σ (z) and σ (F) ⊇ [2n] \
σ (¬z). Since σ (z) and σ (¬z) are disjoint, σ (E) ∪ σ (F) = [2n]. Thus, σ (D) = σ (E) ∪ σ (F) = [2n], as
claimed.

Case 2: Exactly one of (E ∨ z) and (F ∨ ¬z) is a descendant of an x-clause. Without loss of
generality, let F ∨ ¬z be the descendant. Then E ∨ z is either a type (5) clause or derived solely
from type (5) clauses using resolution. However, observe that the only clauses derivable solely
from type (5) clauses via resolution, without creating tautologies as mandated in Q-Res, are of the

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:19

form (c2i−1 ∨ c2i) for some i . It follows that z is not an x variable. Hence, σ (z) and σ (¬z) are distinct
singleton sets. Further, z cannot be a u variable either, since resolution on universal variables is
not permitted in Q-Res.

Now note that for any type (5) clause C , σ (C) = {2i − 1, 2i} for the appropriate i . Similarly,
σ (c2i−1 ∨ c2i) = {2i − 1, 2i}. So if E ∨ z is one of these clauses, then σ (E ∨ z) = σ (z) ∪ σ (¬z) and
σ (E) = σ (¬z). Further, as in Case 1, by induction we know that σ (F ∨ ¬z) = [2n] and σ (F) ⊇
[2n] \ σ (¬z). Hence, σ (E ∨ F) = [2n] as claimed. �

This completes the proof of the theorem. �

The above counterexamples are provided by formulas that require small size but large existential
width. We will now illustrate via another example that also large size and large width can occur.
These examples are very natural formulas based on the parity function, which have recently been
used by Beyersdorff et al. (2015) to show exponential-size lower bounds for Q-Res, and indeed a
separation between Q-Res and ∀Exp+Res. We will later use these formulas in Section 5 to also
show a separation for width between Q-Res and ∀Exp+Res.

Let xor(o1,o2,o) be the set of clauses expressing o ≡ o1 ⊕ o2, i.e., {¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨
¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}. In Beyersdorff et al. (2015), the QBF QParityn is defined as fol-
lows:

∃x1 · · · ∃xn ∀z ∃t2 · · · ∃tn . xor(x1,x2, t2) ∪
⋃n

i=3
xor(ti−1,xi , ti) ∪ {z ∨ tn ,¬z ∨ ¬tn }.

The xi variables act as the input for the parity function, and the ti variables are defined induc-
tively to calculate Parity(x1, . . . ,xi).

We now complement the exponential-size lower bound of Beyersdorff et al. (2015) by a width
lower bound.

Theorem 4.12. w∃ (Q-Res QParityn) ≥ n.

Proof. In the formula QParityn , the contradiction occurs semantically because of the clauses
z ∨ tn , ¬z ∨ ¬tn asserting z � tn (along with the fact that the values of x variables uniquely de-
termine the values of all t variables, in particular, tn). Thus, at least one of these clauses must be
used in any proof, necessitating a ∀-reduction. In Q-Res, we cannot reduce z while any of the t
variables are present; and due to the restrictions in Q-Res, we cannot resolve any descendants of
z ∨ tn with any descendants of ¬z ∨ ¬tn until there is at least one ∀-reduction.

Consider a smallest Q-Res proof, and assume without loss of generality that a first (lowest) ∀-
reduction happens on the positive literal z. Therefore, before this ∀-reduction step, we have essen-
tially a resolution proof π from Γ = xor(x1,x2, t2) ∪⋃n

i=3 xor(ti−1,xi , ti) ∪ {tn ∨ z}. The clause D
that occurs in π immediately before the ∀-reduction must only contain variables from {x1, . . . ,xn }
apart from the literal z, or else the reduction is blocked.

We now use the following observation.

Claim 4.13. Supposex1 ⊕ · · · ⊕ xn � C for some clauseC . Then eitherC is a tautology orC contains

all variables x1, . . . ,xn .

Proof of Claim 4.13. Suppose the clause C is not a tautology, but for some nonempty set
I ⊂ [n], none of the variables xi with i ∈ I appears in C . Since C is a nontautological clause, there
is exactly one partial assignment α falsifyingC . By setting the variables xi , i ∈ I , appropriately, we
can increase α to an assignment satisfying x1 ⊕ · · · ⊕ xn , but still falsifying C . Hence, x1 ⊕ · · · ⊕
xn � C . �

Any assignment to the x variables satisfying x1 ⊕ · · · ⊕ xn has a unique extension to z and the
t variables satisfying all clauses of the formula QParityn . This extension necessarily has tn = x1

⊕ · · · ⊕ xn = 1 and z = 0. Since it satisfies all axioms, by soundness of resolution, it also satisfies D.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:20 O. Beyersdorff et al.

This, along with Claim 4.13, implies that D either is a tautology or has all x variables. Since it
cannot be a tautology (it appears in the proof, and besides, at the very least it has the variable z),
it must have all x variables, and hence has existential width n. �

5 SIMULATIONS: PRESERVING SIZE, WIDTH, AND SPACE ACROSS CALCULI

After these strong negative results, ruling out size-width and space-width relations in Q-Res and
Q-ResT, we aim to determine whether any positive results hold in the expansion systems∀Exp+Res

and IR-calc. Before we can do this, we need to relate the measures of size, width, and space across
the three calculi Q-Res, ∀Exp+Res, IR-calc. Of course, such a comparison in terms of refined sim-
ulations is also interesting on its own as it determines the relative strength of the different proof
systems. As size corresponds to running time, and space to memory consumption of QBF solvers,
such a comparison yields interesting insights into the power of QBF solvers using CDCL versus
expansion techniques.

It is known that IR-calc p-simulates ∀Exp+Res and Q-Res (Beyersdorff et al. 2014), and that
∀Exp+Res p-simulates Q-ResT (Janota and Marques-Silva 2015). We revisit these proofs, with spe-
cial attention to the width parameter, and also obtain simulating proofs that are tree-like if the
original proof is tree-like. The relationships we establish are stated in the following theorem:

Theorem 5.1. For all false QBFs F , the following relations hold:

(1) 1
2S (

IRT-calc
F) ≤ S (∀Exp+ResT

F) ≤ S (
IRT-calc

F) ≤ 3S (Q-ResT
F).

(2) w (
IR-calc

F) = w (∀Exp+Res F) ≤ w∃ (Q-Res F).

(3) CSpace(∀Exp+ResT
F) = CSpace(

IRT-calc
F) ≤ CSpace(Q-ResT

F).

These results follow from Proposition 5.2 and Lemmas 5.3 and 5.4 that are stated and established
below.

Proposition 5.2 (Beyersdorff et al. (2014)). Any proof in ∀Exp+Res of size S , width W , and

space C can be efficiently converted into a proof in IR-calc of size at most 2S , widthW , and space C .

If the proof in ∀Exp+Res is tree-like, so is the resulting IR-calc proof.

Proof. In IR-calc, when an axiom is downloaded, the existential literals in it are annotated
partially. However, in ∀Exp+Res, the annotations are complete; all universal variables at a lower
level than a literal appear in its annotation. To convert a proof π in ∀Exp+Res to one in IR-calc,
all that is needed is to follow up each axiom download with an instantiation that completes the
annotations as in π . This introduces at most one extra step per leaf but does not increase width.
Also, observe that the space required has not changed: to instantiate a clause, we can reuse the
same space. �

Lemma 5.3. ∀Exp+ResT p-simulates IRT-calc while preserving its width, size, and space.

Proof. Recall the main reason that IRT-calc proofs differ from those in ∀Exp+ResT: axioms are
downloaded with partial rather than complete annotations, and annotations can be extended at
any stage by the inst operation.

The idea is to systematically transform an IRT-calc proof, proceeding downward from the top
where we have the empty clause, and modifying annotations as we go down, so that when all leaves
have been modified, the resulting proof is in fact an ∀Exp+ResT proof. This crucially requires that
we start with a tree-like proof; if the underlying graph is not a tree, we cannot always find a way
of modifying the annotations that will work for all descendants.

Let π be an IRT-calc proof of a false QBF F . Without loss of generality, we can assume that ev-
ery resolution node has, as parent, an instantiation node. (If it does not, we introduce the dummy

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:21

inst(∅, ∗) node between it and its parent.) Since the proof is tree-like, we can also collapse contigu-
ous instantiation nodes into a single instantiation node. Thus, as we move down a path from the
root, nodes are alternately instantiation and resolution nodes. We consider each resolution node
and its parent instantiation node to be at the same level.

Starting from the top, which we call level zero, we transform π to another proof π ′ in IRT-calc

maintaining the following invariants: after the ith step, all the instantiated clauses up to level i
are fully annotated and the instantiating assignments are complete. Thus, the instantiation steps
become redundant. This further implies that after the last level (when we reach the axiom farthest
from the top), the resulting proof is in fact a ∀Exp+ResT proof.

—At level 0: The node at this level must be a resolution producing the empty clause, fol-
lowed by a dummy instantiation with the empty assignment. Thus, the clauses at this level
are already fully annotated, but the instantiating assignment is far from complete. Pick an
arbitrary complete assignment, say, σ , and instantiate the empty clause with σ . Clearly the
invariants hold now.

—Assume that the invariants hold after processing all nodes at level i − 1.
—At level i: Let D be an instantiated clause at level i − 1, obtained by instantiating some

clause C by an assignment σ . That is, D = inst(C,σ). By the induction hypothesis, D is
fully annotated and σ is complete. Let C be obtained by resolving E = (G ∨ xτ) and F =
(H ∨ ¬xτ). We need to make E and F fully annotated. Let E = inst(I , β1) and F = inst(J , β2)
in π . Replace E by E ′ = inst(I , β1 ◦ σ) and F by F ′ = inst(J , β2 ◦ σ). As σ is complete, both
β1 ◦ σ and β2 ◦ σ are complete, and hence both E ′ and F ′ are fully annotated. The resolution

step is now performed on xτ ′ , where τ ′ = τ ◦ σ is the resulting annotation on x . It is easy
to see that the resolvent of E ′ and F ′ is D, so the intermediate instantiation step going from
C to D becomes redundant.

It is clear that the simulation preserves width. It also does not increase size: we may intro-
duce dummy instantiation nodes to make the proof “alternating,” but after the transformation, all
instantiations—dummy and actual—are eliminated completely. It is also clear that the simulation
preserves the space needed, since the structure of the proof is preserved. �

The simulation in Lemma 5.3 exhibits an interesting phenomenon: while it shows that the tree-
like versions of ∀Exp+Res and IR-calc are p-equivalent, it was shown by Beyersdorff et al. (2015)
that in the dag-like versions, IR-calc is exponentially stronger than∀Exp+Res. Thus,∀Exp+Res and
IR-calc provide a rare example in proof complexity of two systems that coincide in the tree-like
model but are separated in the dag-like model.

Lemma 5.4. IRT-calc p-simulates Q-ResT while preserving space and existential width ex-

actly and size up to a factor of 3. That is, S (
IRT-calc

F) ≤ 3S (Q-ResT
F), CSpace(

IRT-calc
F) ≤

CSpace(Q-ResT
F), and w (

IR-calc
F) ≤ w∃ (Q-Res F).

Proof. We use the same simulation as given by Beyersdorff et al. (2014). This simulation was
originally for dag-like proof systems, but here we check that it also works for tree-like systems,
and we observe that space and existential width are preserved.

Let C1, . . . ,Ck be a Q-ResT proof. We translate the clauses into clauses D1, . . . ,Dk , which will
form the skeleton of a proof in IR-calc.

—For an axiom Ci in Q-ResT, we introduce the same clause Di by the axiom rule of IR-calc;
i.e., we remove all universal variables and add annotations.

—If Ci is obtained via ∀-reduction from Cj , then Di = D j ; we make no change.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:22 O. Beyersdorff et al.

—Consider now the case that Ci is derived by resolving Cj and Ck with pivot variable x .
Then D j = xτ ∨ Kj and Dk = ¬xσ ∨ Kk . It is shown by Beyersdorff et al. (2014) that the
annotations τ and σ are not contradictory; in fact, no annotations in the two clauses are
contradictory. So if we define D ′j = inst(σ ,D j) and D ′

k
= inst(τ ,Dk), then the annotations

of x in D ′j and ¬x in D ′
k

match, and we can resolve on this literal. Define D ′i as the resolvent

of D ′j and D ′
k

. We can perform a further instantiation to obtain Di = inst(η,Di), where η is

the set of all assignments to universal variables appearing anywhere in D ′i . Di has no more
literals than Ci . For details, see Beyersdorff et al. (2014).

Note that to complete this skeleton into a proof, we only add instantiation rules. Thus, if the
original proof was tree-like, so is the new proof. If the original proof has size S , the new proof has
size at most 4S , since each resolution may now be preceded by two instantiations and followed by
one instantiation. However, this is an overcount, since we are counting two instantiations per edge,
and contiguous instantiations can be collapsed. That is, every instantiation following a resolution
step can be merged with the instantiation preceding the next resolution and need not be counted
separately. The only exception is at the root, where there is nothing to collapse it with. However,
at the root, the instantiation itself is redundant and can be discarded. Thus, we obtain a new proof
of size at most 3S .

Further, if the original proof had existential widthw , then the new proof has widthw since each
Di has at most (annotated versions of) the existential literals of Ci .

Regarding space, observe that simulating axiom download and ∀-Red do not require additional
space. At the resolution step, the simulation first performs additional instantiations. But instanti-
ation does not need additional space. So the space bound remains the same. �

As a by-product, these simulations enable us to give an easy and elementary proof of the sim-
ulation of Q-ResT by ∀Exp+Res, shown by Janota and Marques-Silva (2015) via a more involved
argument. In fact, our result improves upon the simulation of Janota and Marques-Silva (2015) as
we show that even tree-like ∀Exp+Res suffices to p-simulate Q-ResT.

Corollary 5.5 (Janota and Marqes-Silva (2015)). ∀Exp+ResT p-simulates Q-ResT.

Proof. By Lemma 5.3, ∀Exp+ResT p-simulates IRT-calc, which in turn p-simulates Q-ResT by
Lemma 5.4. �

Using again the width lower bound for QParityn (Theorem 4.12), we can show that item 2 of
Theorem 5.1 cannot be improved; i.e., we obtain an optimal width separation between Q-Res and
∀Exp+Res.

Theorem 5.6. There exist false QBFsψn with w∃ (Q-Res ψn) = Ω(n), but w (∀Exp+Res ψn) = O (1).

Proof. We use the QParityn formulas, which by Theorem 4.12 require existential width n in
Q-Res. To get the separation, it remains to show w (∀Exp+Res QParityn) = O (1). For this we use

the following ∀Exp+Res proofs of QParityn of Beyersdorff et al. (2015): the formulas QParityn

have exactly one universal variable z, which we expand in both polarities 0 and 1. This does not

affect the xi variables, but creates different copies tz/0
i and tz/1

i of the existential variables right of

z. Using the clauses of xor(ti−1,xi , ti), we can inductively derive clauses representing tz/0
i = tz/1

i .

This lets us derive a contradiction using the clauses tz/0
n and ¬tz/1

n .
Clearly, this proof only contains clauses of constant width, giving the result. �

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:23

6 POSITIVE RESULTS: SIZE, WIDTH, AND SPACE IN TREE-LIKE QBF CALCULI

We are now in a position to show some positive results on size-width and size-space relations for
QBF resolution calculi. However, most of these results only apply to rather weak tree-like proof
systems.

6.1 Relations in the Expansion Calculi ∀Exp+Res and IR-calc

We first observe that for ∀Exp+Res, almost the full spectrum of relations from classical resolution
remains valid.

Theorem 6.1. For all false QBFs F , the following relations hold:

(1) S
(
∀Exp+ResT

F
)
≥ 2

w

(
∀Exp+Res F

)
−w∃ (F)

.

(2) S
(
∀Exp+ResT

F
)
≥ 2

CSpace

(
∀Exp+ResT

F
)
− 1.

(3) CSpace
(
∀Exp+ResT

F
)
≥ CSpace

(
∀Exp+Res F

)
≥ w

(
∀Exp+Res F

)
−w∃ (F) + 1.

Proof. This theorem follows from the analogous statements for classical resolution. We just
describe how to apply those results to ∀Exp+Res.

We know that in ∀Exp+ResT proofs, leaves correspond to the expanded clauses from F . The
expanded clauses contain only existential (annotated) literals and no universal literals. Let G be
the QBF obtained after expanding F based on all possible assignments of universal variables.
Clearly, G contains no universal variables and hence can be treated as a propositional CNF formula
(all variables are only existentially quantified). That is, if G is the matrix of clauses in G, then G
asserts that G is satisfiable. Also, w (G) = w (G) = w∃ (F).

Refutations of F in∀Exp+Res (∀Exp+ResT, respectively) are precisely refutations (tree-like refu-
tations, respectively) of G in classical resolution; the size, space, and width are exactly the same,

by definition. That is, S (ResT
G) = S (∀Exp+ResT

F),w (Res G) = w (∀Exp+Res F), CSpace(Res G) =

CSpace(∀Exp+Res F), and CSpace(ResT
G) = CSpace(∀Exp+ResT

F). Now the theorem follows by

applying Theorems 3.3, 3.4, and 3.5 on G. �

We remark that as in item 3 from Theorem 6.1, lower bounds in terms of width for total space,
which counts not only the number of pebbled clauses but also the literals in it (cf. Bonacina et al.
(2016)), can also be transferred. In fact, Bonacina (2016) show that in propositional resolution, total
space is at least width squared, and the same holds for ∀Exp+Res —total space is at least square of
existential width—as we directly transfer the propositional bounds to that system.

By the equivalence of ∀Exp+ResT and IRT-calc with respect to all three measures’ size, width,
and space (Theorem 5.1), we can immediately transfer all results from Theorem 6.1 to IRT-calc.

Theorem 6.2. For all false QBFs F , the following relations hold:

(1) S
(

IRT-calc
F

)
≥ 2

w

(
IR-calc

F
)
−w∃ (F)

.

(2) S
(

IRT-calc
F

)
≥ 2

CSpace
(

IRT-calc
F

)
− 1.

(3) CSpace
(

IRT-calc
F

)
≥ w

(
IR-calc

F
)
−w∃ (F) + 1.

6.2 The Size-Space Relation in Tree-Like Q-Resolution

We finally return to Q-Res. Most relations were already ruled out in Section 4 for both Q-Res

and Q-ResT. The only relation that we can still show to hold is the classical size-space relation
(Theorem 3.4), which we transfer from ResT to Q-ResT.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:24 O. Beyersdorff et al.

In classical resolution, this relationship was obtained using pebbling games (Esteban and Torán
2001). We observe that the same approach works for Q-ResT as well, giving the analogous rela-
tionship. That is, we show:

Theorem 6.3. For a false QBF F ,

S (Q-ResT
F) ≥ 2

CSpace
(

Q-ResT
F

)
− 1.

Proof. The proof is almost identical to the proof for classical resolution by Esteban and Torán
(2001). We give a brief sketch.

Let S (Q-ResT
F) = s . Consider a tree-like Q-ResT proof π of F (i.e., π Q-ResT

F), of size s , and
let T be the underlying proof-tree.

In contrast to classical resolution, a proof graph in Q-Res may have unary nodes corresponding
to ∀-reductions. In particular, for a proof in Q-ResT, there may be paths corresponding to series of
∀-reductions. Once the lower end of such a path is pebbled, the same pebble can be slid up to the
top of the path; no additional pebbles are needed. So without loss of generality, we work with the
tree T ′ obtained by shortcutting all paths containing unary nodes.

Let dc (T) be the depth of the biggest complete binary tree that can be embedded in T ′ or in T .
(We say that a graph G1 is embeddable in a graph G2 if a graph isomorphic to G2 can be obtained

from G1 by adding vertices and edges or subdividing edges of G1.) Clearly, 2dc (T)+1 − 1 ≤ s .
By induction on |T ′ |, we can show that dc (T) + 1 pebbles suffice to pebble T ′. Hence, by the

argument given above, dc (T) + 1 pebbles suffice to pebble T as well. Now, by Definition 3.2, we
obtain CSpace(Q-ResT

F) ≤ dc (T) + 1. Hence,

2
CSpace

(
Q-ResT

F
)
− 1 ≤ 2dc (T)+1 − 1 ≤ s = S

(
Q-ResT

F
)
,

as claimed. �

7 CONCLUSION

Our results show that the success story of width in resolution needs to be rethought when moving
to QBF. Indeed, the question arises: is width a central parameter in QBF resolution? Is there another
parameter that plays a similar role as classical width for understanding QBF resolution size and
space?

Our findings almost completely uncover the picture for size, space, and width for the most basic
and arguably most important QBF resolution systems Q-Res, ∀Exp+Res, and IR-calc. We showed
that for the width measure, which counts both the universal and existential variables, the size-
width relation as in resolution fails in tree-like Q-Res as well as in general Q-Res (Proposition 3.6).
We also introduce a tighter width measure, i.e., existential width, which only counts the existential
variables and showed that the size-width relation fails, even for this tighter measure, for both the
tree-like Q-Res (Theorem 4.2) and the general Q-Res (Theorem 4.9).

One question prompted by these results is whether one can define an even tighter width measure
for which we can obtain positive results for Q-Res. For instance, such a measure could attach a
weight to the existential variables, and, intuitively, the left-most existential block should receive
the highest weight. However, our results above point to a negative answer also here.

In particular, consider QBFs of the formQ1X1, · · · QnXn . F , whereQi ∈ {∃,∀}, withQ1 = ∃,Qi �
Qi+1, andXi are pairwise disjoint sets of variables. F is a CNF formula over variablesX1 ∪ · · · ∪ Xn .
Define the first-block existential width for a clauseC (over variablesX1 ∪ · · · ∪ Xn) to be the number
of existential literals inC from the first existential block (i.e., from X1). We denote this measure by
w∃1 (C).

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

Are Short Proofs Narrow? QBF Resolution Is Not So Simple 1:25

For the false QBF CR′n from Theorem 4.2, we have S (Q-ResT
CR′n) = nO (1) , w∃1 (CR′n) = O (1),

but w∃1 (Q-Res CR′n) ≥ n. This holds because any tree-like Q-Res proof π must contain a clause
Dt where the first ∀-Red step is performed, and we already showed in Theorem 4.2 that Dt must
contain at least n distinct existential variables xi, j . Obviously, xi, j belong to the first existential
block of CR′n . Thus, Theorem 4.2 shows that the size-width relation with even the width measure
w∃1 fails in tree-like Q-Res.

The most immediate open question arising from our investigation is whether size-width rela-
tions hold for general dag-like ∀Exp+Res or IR-calc proofs. The issue here is that in the classical
size-width relation of Ben-Sasson and Wigderson (2001), the number of variables enters the for-
mula in a crucial way. For the instantiation calculi, it is not clear what should qualify as the right
count for this as different annotations of the same existential variable are formally treated as dis-
tinct variables (which is also clearly justified by the semantic meaning of expansions).

For further research, it will also be interesting whether size-width or space-width relations apply
to any of the stronger QBF resolution systems QU-Res (Van Gelder 2012), LD-Q-Res (Balabanov
and Jiang 2012), or IRM-calc (Beyersdorff et al. 2014). However, we conjecture that the negative
picture also prevails for these systems.

ACKNOWLEDGMENTS

We thank the referees for their comments, which helped to improve the presentation of this article.
We also thank Joshua Blinkhorn for useful discussions concerning first-block existential width.

REFERENCES

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern Approach. Cambridge University Press.

Albert Atserias and Víctor Dalmau. 2008. A combinatorial characterization of resolution width. J. Comput. System Sci. 74,

3 (2008), 323–334.

Valeriy Balabanov and Jie-Hong R. Jiang. 2012. Unified QBF certification and its applications. Form. Methods Syst. Des. 41,

1 (2012), 45–65.

Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. 2014. QBF resolution systems and their proof complexities. In

Proc. Theory and Applications of Satisfiability Testing (SAT’14). Springer, 154–169.

Paul Beame, Christopher Beck, and Russell Impagliazzo. 2012. Time-space tradeoffs in resolution: Superpolynomial lower

bounds for superlinear space. In Proc. ACM Symposium on Theory of Computing (STOC’12). ACM, 213–232.

Eli Ben-Sasson. 2002. Size space tradeoffs for resolution. In Proc. Annual ACM Symposium on Theory of Computing (STOC’02).

ACM, 457–464.

Eli Ben-Sasson and Jakob Nordström. 2011. Understanding space in proof complexity: Separations and trade-offs via sub-

stitutions. In Proc. Innovations in Computer Science (ICS’11). Tsinghua University Press, 401–416.

Eli Ben-Sasson and Avi Wigderson. 2001. Short proofs are narrow - resolution made simple. J. ACM 48, 2 (2001), 149–169.

Marco Benedetti and Hratch Mangassarian. 2008. QBF-based formal verification: Experience and perspectives. JSAT 5, 1–4

(2008), 133–191.

Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. 2016. Lower bounds: From circuits to QBF proof systems. In Proc. ACM

Conference on Innovations in Theoretical Computer Science (ITCS’16). ACM, 249–260.

Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2014. On unification of QBF resolution-based calculi. In Proc. Mathe-

matical Foundations of Computer Science (MFCS’14). Springer, 81–93.

Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2015. Proof complexity of resolution-based QBF calculi. In Proc. Sympo-

sium on Theoretical Aspects of Computer Science (STACS’15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 76–89.

Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2016. Are short proofs narrow? QBF resolution is not

simple. In Proc. Symposium on Theoretical Aspects of Computer Science (STACS’16). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 15:1–15:14.

Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2017. Feasible interpolation for QBF resolution calculi.

Logical Methods Comput. Sci. 13, 2 (2017), 1–20.

Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. 2017. A game characterisation of tree-like Q-Resolution size. J.

Comput. System Sci. (2017). in press.

Olaf Beyersdorff and Oliver Kullmann. 2014. Unified characterisations of resolution hardness measures. In Proc. Theory and

Applications of Satisfiability Testing (SAT’14). Springer, 170–187.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

1:26 O. Beyersdorff et al.

Olaf Beyersdorff and Ján Pich. 2016. Understanding Gentzen and Frege systems for QBF. In Proc. ACM/IEEE Symposium on

Logic in Computer Science (LICS’16). ACM, 146–155.

Archie Blake. 1937. Canonical Expressions in Boolean Algebra. Ph.D. Dissertation. University of Chicago.

Ilario Bonacina. 2016. Total space in resolution is at least width squared. In Proc. International Colloquium on Automata,

Languages, and Programming (ICALP’16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 56:1–56:13.

Ilario Bonacina, Nicola Galesi, and Neil Thapen. 2016. Total space in resolution. SIAM J. Comput. 45, 5 (2016), 1894–1909.

Maria Luisa Bonet and Nicola Galesi. 1999. A study of proof search algorithms for resolution and polynomial calculus. In

Proc. Annual Symposium on Foundations of Computer Science (FOCS’99). IEEE Computer Society, 422–432.

Samuel R. Buss. 2012. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163, 7 (2012), 906–917.

Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. 2017. Conformant planning as a case study of incre-

mental QBF solving. Ann. Math. Artif. Intell. 80, 1 (2017), 21–45.

Juan Luis Esteban and Jacobo Torán. 2001. Space bounds for resolution. Inf. Comput. 171, 1 (2001), 84–97.

Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc Vinyals. 2015. From small space to small width

in resolution. ACM Trans. Comput. Log. 16, 4 (2015), 28:1–28:15.

Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke. 2016. Solving QBF with counterexample

guided refinement. Artif. Intell. 234 (2016), 1–25.

Mikolás Janota and Joao Marques-Silva. 2015. Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577

(2015), 25–42.

Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. 1995. Resolution for quantified Boolean formulas. Inf. Comput.

117, 1 (1995), 12–18.

Hans Kleine Büning and Theodor Lettmann. 1999. Propositional Logic: Deduction and Algorithms. Cambridge Tracts in

Theoretical Computer Science, Vol. 48. Cambridge University Press.

Jan Krajíček. 1997. Interpolation theorems, lower bounds for proof systems and independence results for bounded arith-

metic. J. Symbolic Logic 62, 2 (1997), 457–486.

Oliver Kullmann. 1999. Investigating a general hierarchy of polynomially decidable classes of CNF’s based on short tree-like

resolution proofs. Electronic Colloq. Comput. Complexity (ECCC) 99, 41 (1999).

Florian Lonsing and Armin Biere. 2010. DepQBF: A dependency-aware QBF Solver. JSAT 7, 2–3 (2010), 71–76.

Florian Lonsing and Uwe Egly. 2017. DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In Proc. Interna-

tional Conference on Automated Deduction (CADE’17). Springer, 371–384.

Meena Mahajan and Anil Shukla. 2016. Level-ordered Q -resolution and tree-like Q -resolution are incomparable. Inform.

Process. Lett. 116, 3 (2016), 256–258.

Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. 2009. Conflict-driven clause learning SAT solvers. In Handbook of Sat-

isfiability, Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh (Eds.). Frontiers in Artificial Intelligence

and Applications, Vol. 185. IOS Press, Chapter 4, 131–153.

Jakob Nordström. 2013. Pebble games, proof complexity, and time-space trade-offs. Logical Methods Comput. Sci. 9, 3 (2013),

1–63.

Jussi Rintanen. 2007. Asymptotically optimal encodings of conformant planning in QBF. In Proc. AAAI Conference on Arti-

ficial Intelligence (AAAI’07). AAAI Press, 1045–1050.

John Alan Robinson. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12 (1965), 23–41.

Ashish Sabharwal. 2005. Algorithmic Applications of Propositional Proof Complexity. Ph.D. Dissertation. University of Wash-

ington.

Allen Van Gelder. 2012. Contributions to the theory of practical quantified Boolean formula solving. In Proc. Principles and

Practice of Constraint Programming (CP’12). Springer, 647–663.

Lintao Zhang and Sharad Malik. 2002. Conflict driven learning in a quantified boolean satisfiability solver. In Proc.

IEEE/ACM International Conference on Computer-aided Design (ICCAD’02). ACM/IEEE Computer Society, 442–449.

Received July 2016; revised October 2017; accepted October 2017

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 1. Publication date: December 2017.

