Computability and Complexity Theory: An Introduction

Meena Mahajan
meena@imsc.res.in
http://www.imsc.res.in/~meena
Understanding Computation

Kinds of questions we seek answers to:

- Is a given graph planar?
- Can a given integer matrix be made singular by changing at most one entry?
- Is a given number prime?
- Does a player in a certain game have a winning strategy?
- Is a given formula a tautology?
- Does a given Diophantine equation have a solution?
Kinds of answers we seek:

• A list of answers to all instances?
 Too long a list; infinite.
Kinds of answers we seek:

- A list of answers to all instances? Too long a list; infinite.
- A list of answers to interesting instances? Still too long.
Understanding Computation ...

Kinds of answers we seek:

- A list of answers to all instances?
 Too long a list; infinite.

- A list of answers to **interesting** instances?
 Still too long.

- A finitely described procedure that, when applied to any instance, gives the correct answer in finite time.
 i.e. an **effective procedure**.
Example: Testing planarity

- Input: A Graph G
Example: Testing planarity

- Input: A Graph G
- Strategy: Try out all possible combinatorial embeddings (cyclic ordering of edges incident at a vertex)
Example: Testing planarity

- Input: A Graph G
- Strategy: Try out all possible combinatorial embeddings (cyclic ordering of edges incident at a vertex)
- For each combinatorial embedding, compute its genus.
Example: Testing planarity

- Input: A Graph G
- Strategy: Try out all possible combinatorial embeddings (cyclic ordering of edges incident at a vertex)
- For each combinatorial embedding, compute its genus.
- If for some embedding, the genus is 0, stop and say Yes.
Example: Testing planarity

- Input: A Graph \(G \)
- Strategy: Try out all possible combinatorial embeddings (cyclic ordering of edges incident at a vertex)
- For each combinatorial embedding, compute its genus.
- If for some embedding, the genus is 0, stop and say Yes.
- If no such embedding is found, stop and say No.
A Non-Example

• Input: An $n \times n$ matrix A with integer entries. Decide if A can be made singular by changing at most one entry.
A Non-Example

• Input: An $n \times n$ matrix A with integer entries. Decide if A can be made singular by changing at most one entry.

• If A is already singular, stop and say Yes. Otherwise ...
A Non-Example

• Input: An $n \times n$ matrix A with integer entries. Decide if A can be made singular by changing at most one entry.

• If A is already singular, stop and say Yes. Otherwise ...

• Strategy: The set \mathbb{Z} of all integers is countably infinite. For each $x \in \mathbb{Z}$ and each $i, j \in [n]$, check if replacing $A[i, j]$ by x gives a singular matrix. If Yes, halt and report Yes, else try the next triple x', i', j'.
A Non-Example

- Input: An $n \times n$ matrix A with integer entries. Decide if A can be made singular by changing at most one entry.
- If A is already singular, stop and say Yes. Otherwise ...
- Strategy: The set \mathbb{Z} of all integers is countably infinite. For each $x \in \mathbb{Z}$ and each $i, j \in [n]$, check if replacing $A[i, j]$ by x gives a singular matrix. If Yes, halt and report Yes, else try the next triple x', i', j'.
- If A can be made singular, we will find a witness and report Yes. Otherwise, the procedure will run forever.
Another Non-Example

• Input: A Diophantine equation E. Decide if it has an integer solution.
Another Non-Example

- **Input:** A Diophantine equation E. Decide if it has an integer solution.

- **Strategy:** Let E have n variables. The set \mathbb{Z}^n, of all possible integer assignments to the variables, is countably infinite. Try out each assignment.
Another Non-Example

• Input: A Diophantine equation E. Decide if it has an integer solution.

• Strategy: Let E have n variables. The set \mathbb{Z}^n, of all possible integer assignments to the variables, is countably infinite. Try out each assignment.

• If there is a solution, we will eventually find it and stop. If there is none, the procedure will run forever.
Decidability

- Effective procedures (also known as recursive procedures): finitely described procedures that eventually halt on every input. The standard formalism is via Turing machines, but there are many other equivalent ones.
Decidability

• Effective procedures (also known as recursive procedures): finitely described procedures that eventually halt on every input. The standard formalism is via Turing machines, but there are many other equivalent ones.

• Problems that can be solved by effective procedures are said to be decidable.
Decidability

- **Effective procedures** (also known as recursive procedures): finitely described procedures that eventually halt on every input. The standard formalism is via Turing machines, but there are many other equivalent ones.

- Problems that can be solved by effective procedures are said to be **decidable**.

- **Undecidable** problems have no effective procedures.
Decidability

- **Effective procedures** (also known as recursive procedures): finitely described procedures that eventually halt on every input. The standard formalism is via Turing machines, but there are many other equivalent ones.
- Problems that can be solved by effective procedures are said to be **decidable**.
- **Undecidable** problems have no effective procedures.
- Some problems can be proved to be undecidable by a diagonalization argument.
A diagonalization example

• Suppose there is an effective procedure P to decide the Halting Problem:

P

Q \rightarrow Yes; Q halts on w

w \rightarrow No; Q loops on w
A diagonalization example

• Suppose there is an effective procedure P to decide the Halting Problem:

• Obtain P' from P as follows:
A diagonalization example

• Suppose there is an effective procedure P to decide the Halting Problem:

• Obtain P’ from P as follows:

- P’(Q) loops iff P(Q,Q) says Yes iff Q halts on Q.
- P’(Q) halts iff P(Q,Q) says No iff Q loops on Q.
A diagonalization example

- Suppose there is an effective procedure P to decide the Halting Problem:
- Obtain P’ from P as follows:

 - P’(Q) loops iff P(Q,Q) says Yes iff Q halts on Q.
 - P’(Q) halts iff P(Q,Q) says No iff Q loops on Q.
 - What does P’ do on input P’?
Some decidable problems

• Is a given graph planar? We saw an effective procedure for this.

• Can a given matrix over \mathbb{Z} be made singular by changing at most one entry? The procedure we saw was not effective, but there is another procedure that is effective.

• Is a given number prime?

• Given a finite set of rewrite rules $\alpha \rightarrow \beta$, strings w, x and a natural number k, can x be obtained from w through at most k applications of rewrite rules?
Some undecidable problems

• The Halting Problem: Does a given program never get into an infinite loop?
Some undecidable problems

• The Halting Problem: Does a given program never get into an infinite loop?

• Given a finite set of rewrite rules $\alpha \rightarrow \beta$ and strings w, x, can x be obtained from w through a sequence of applications of rewrite rules?
Some undecidable problems

- The Halting Problem: Does a given program never get into an infinite loop?
- Given a finite set of rewrite rules $\alpha \rightarrow \beta$ and strings w, x, can x be obtained from w through a sequence of applications of rewrite rules?
- Does a given Diophantine equation have a solution?
Some undecidable problems

- The Halting Problem: Does a given program never get into an infinite loop?
- Given a finite set of rewrite rules $\alpha \rightarrow \beta$ and strings w, x, can x be obtained from w through a sequence of applications of rewrite rules?
- Does a given Diophantine equation have a solution?
- Given a matrix with entries from $\{0, 1\} \cup \{x_1, \ldots, x_t\}$, is there an integer assignment to the variables x_i that makes the matrix singular?
Use of Resources

• How much space / time does a given procedure use? — space / time complexity of the given procedure.

• Is there an equivalent procedure that uses less? What is the minimum needed? i.e. How much is necessary, how much is sufficient? — inherent space / time complexity of the problem.

• To show sufficiency, describe any procedure that uses that much.

• To show necessity, a lower bound proof is needed.
Planarity testing

- The planarity testing procedure we saw earlier used space proportional to $|E|$. It tried out all combinatorial embeddings one by one, so it needed enough space to write down the embedding currently being tested.
Planarity testing

• The planarity testing procedure we saw earlier used space proportional to $|E|$. It tried out all combinatorial embeddings one by one, so it needed enough space to write down the embedding currently being tested.

• It also needed time as large as $c|E| + |V|$, since there are those many embeddings.
Planarity testing

• The planarity testing procedure we saw earlier used space proportional to $|E|$. It tried out all combinatorial embeddings one by one, so it needed enough space to write down the embedding currently being tested.

• It also needed time as large as $c|E| + |V|$, since there are those many embeddings.

• But planarity testing is in fact possible in space proportional to $\log(|V| + |E|)$, and time proportional to $|V||E|$.
Some complexity classes

Space bounds: logarithmic, polynomial, exponential ...
Time bounds: polynomial, exponential ...

Log → PSPACE → EXPSPACE

P → EXPTIME
Some complexity classes

Space bounds: logarithmic, polynomial, exponential ...
Time bounds: polynomial, exponential ...

Log ↓ PSPACE
 ↓ P
 ↓ EXPSPACE

P↑↑↑↑↑↑↑↑↑↑↑
EXPTIME

Some complexity classes

Space bounds: logarithmic, polynomial, exponential ...

Time bounds: polynomial, exponential ...

Log → P → PSPACE → EXPTIME → EXPSPACE

Polynomial time P is considered to capture **feasible** or **tractable** computation.

Many important natural problems are in P:

- Decide whether a graph has a perfect matching.
- Evaluate a circuit with AND, OR, NOT gates.
- Decide whether there is a path from s to t in a given directed graph.
Short certificates and NP

- Many important natural classification problems are not known to be in P: Are two given graphs isomorphic? Does a linear program have an integer solution?
Short certificates and NP

• Many important natural classification problems are not known to be in P: Are two given graphs isomorphic? Does a linear program have an integer solution?

• However, some of these have a nice property: when the input belongs to the specified class, there is a short, convincing proof of this.
Short certificates and NP

• Many important natural classification problems are not known to be in P: Are two given graphs isomorphic? Does a linear program have an integer solution?

• However, some of these have a nice property: when the input belongs to the specified class, there is a short, convincing proof of this.

• e.g. To prove that G_1 and G_2 are isomorphic, just give the mapping $f : V(G_1) \rightarrow V(G_2)$. A polynomial-time verifier can check that f is indeed an isomorphism.
Short certificates and NP

• Many important natural classification problems are not known to be in P: Are two given graphs isomorphic? Does a linear program have an integer solution?

• However, some of these have a nice property: when the input belongs to the specified class, there is a short, convincing proof of this.

• To prove that a linear program has an integer solution, just give such a solution. Verifying that it is indeed a solution is in P.
Short certificates and NP

- Many important natural classification problems are not known to be in \(P \): Are two given graphs isomorphic? Does a linear program have an integer solution?
- However, some of these have a nice property: when the input belongs to the specified class, there is a short, convincing proof of this.
- \(\text{NP} \) is exactly the class of such problems: properties \(C \) for which membership (statements of the form \(x \in C \)) has short, efficiently verifiable proofs.
- \(\text{NP} \) stands for Non-deterministic Polynomial time. A non-deterministic procedure can guess the short convincing proof in polynomial time, and then verify that it is indeed a proof.
The classes NP and co-NP

- Clearly, $P \subseteq NP$. The million dollar question is whether all problems in NP are in fact in P.
The classes NP and co-NP

• Clearly, $P \subseteq NP$. The million dollar question is whether all problems in NP are in fact in P.

• A related question: Are NP and co-NP the same? i.e. if a property C has short efficiently verifiable proofs, does the property \overline{C} have such proofs too?

What would be a short verifiable proof that G_1 and G_2 are not isomorphic?
The classes \textit{NP} and \textit{co-NP}

- Clearly, $P \subseteq \text{NP}$. The million dollar question is whether all problems in \text{NP} are in fact in \text{P}.

- A related question: Are \text{NP} and \text{co-NP} the same? i.e. if a property C has short efficiently verifiable proofs, does the property \overline{C} have such proofs too?

 What would be a short verifiable proof that G_1 and G_2 are not isomorphic?

- It is generally believed that $P \neq \text{NP} \cap \text{co-NP} \neq \text{NP}$.
Other nondeterministic classes

- NLog: problems with nondeterministic logarithmic space algorithms.
Other nondeterministic classes

- $N\text{Log}$: problems with nondeterministic logarithmic space algorithms.
- This is more restrictive than having a short proof checkable in logspace. Even the process of nondeterministically guessing a proof should not need more than logspace. Can a graph isomorphism be guessed in logspace?
Other nondeterministic classes

- **NLog**: problems with nondeterministic logarithmic space algorithms.

- This is more restrictive than having a short proof checkable in logspace. Even the process of nondeterministically guessing a proof should not need more than logspace. Can a graph isomorphism be guessed in logspace?

- **NPSPACE**: problems with nondeterministic polynomial space algorithms. Proofs can be exponentially long, but need to be guessable and checkable in polynomial space.
Relating the classes

From the definitions,

\[
\text{Log} \rightarrow \text{P} \rightarrow \text{PSPACE} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{NLog} \quad \text{NP} \cap \text{co-NP} \rightarrow \text{NP} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{NLogNP} \quad \text{NP} \quad \text{NPSPACE}
\]
Relating the classes

From the definitions,

\[
\begin{align*}
\text{Log} &\quad \rightarrow \quad \text{P} &\quad \rightarrow \quad \text{PSPACE} \\
\text{NLog} &\quad \rightarrow \quad \text{NP} \cap \text{co-NP} &\quad \rightarrow \quad \text{NP} &\quad \rightarrow \quad \text{NPSPACE}
\end{align*}
\]

In fact, much more is known:

\[
\begin{align*}
\text{Log} &\quad \rightarrow \quad \text{P} &\quad \rightarrow \quad \text{PSPACE} \\
\text{NLog} &\quad \rightarrow \quad \text{co-NLog} &\quad \rightarrow \quad \text{NP} \cap \text{co-NP} &\quad \rightarrow \quad \text{NP} &\quad \rightarrow \quad \text{NPSPACE}
\end{align*}
\]
The notion of reductions

How does one compare the computational difficulty of problems? We want to make statements like:

- Graph Isomorphism is no harder than Integer Programming, and may be easier.
- Integer Programming and Hamiltonian Cycle are equally hard.

Testing property \(C \) is no harder than testing property \(D \) if any instance \(x \) can be efficiently (in \(P \), or \(\log \)) transformed to an instance \(y \) such that \(x \in C \iff y \in D \). Such a transformation is called a many-one reduction, \(\leq_m \).
What reductions achieve

- Reductions impose a partial order on the set of all problems. Problems in an equivalent class \equiv_m reduce to each other.
What reductions achieve

- Reductions impose a partial order on the set of all problems. Problems in an equivalent class \equiv_m reduce to each other.

- Reasonable complexity classes do not slice through an equivalence class \equiv_m. They equal the union of some such classes, and are usually downward closed.
What reductions achieve

• Reductions impose a partial order on the set of all problems. Problems in an equivalent class \equiv_m reduce to each other.

• Reasonable complexity classes do not slice through an equivalence class \equiv_m. They equal the union of some such classes, and are usually downward closed.

• In the partial order induced by \leq_m, a complexity class C can have many upper bounds.
What reductions achieve

• Reductions impose a partial order on the set of all problems. Problems in an equivalent class \(\equiv_m \) reduce to each other.

• Reasonable complexity classes do not slice through an equivalence class \(\equiv_m \). They equal the union of some such classes, and are usually downward closed.

• In the partial order induced by \(\leq_m \), a complexity class \(C \) can have many upper bounds.

• Problems in an \(\equiv_m \) class that is an upper bound for a complexity class \(C \) are said to be hard for \(C \).
What reductions achieve

• Reductions impose a partial order on the set of all problems. Problems in an equivalent class \equiv_m reduce to each other.

• Reasonable complexity classes do not slice through an equivalence class \equiv_m. They equal the union of some such classes, and are usually downward closed.

• In the partial order induced by \leq_m, a complexity class C can have many upper bounds.

• Problems in an \equiv_m class that is an upper bound for a complexity class C are said to be hard for C.

• If an upper bound is inside C, then its \equiv_m class is a least upper bound. Such problems are said to be complete for C.
NP-completeness

A problem is NP-complete if

- it is in NP, and
- it is an upper bound for NP. i.e. every problem in NP reduces to it.

The Cook-Levin theorem says that Boolean satisfiability SAT is NP-complete.

Subsequently, several other problems in NP have been shown to be NP-complete by reducing SAT, or any other NP-complete problem, to them. These problems are from diverse fields.
Combinatorial NP-complete problems

- **Boolean Formula Satisfiability**: Is there a True/False assignment to variables x_1, \ldots, x_n that makes the Boolean formula $F(x_1, \ldots, x_n)$ true?

- **Integer programming**: Is there an integer solution to the system of inequalities $Ax \leq b$?

- **Hamiltonian circuit problem**: Does a directed graph G have a Hamiltonian cycle?

- **Sorting by Reversals**: Can a string x_1, \ldots, x_n be sorted in fewer than k moves, where a move consists of picking a substring and reversing it?
Algebraic NP-complete problems

• Radius of Non-Singularity

 Instance: A rational square matrix A, a rational θ.

 Decide: Can A be made singular by changing each entry by at most θ?

• Satisfiability of Quadratic Polynomials:

 Instance: t degree-2 polynomials P_1, \ldots, P_t on n elements from \mathbb{F}_2.

 Decide: Do these polynomials have a common zero?
NP-completeness in coding theory

- Maximum Likelihood Decoding: Given a binary linear code (via its parity check matrix H), and a word y, find the codeword c nearest to it.
NP-completeness in coding theory

- **Maximum Likelihood Decoding**: Given a binary linear code (via its parity check matrix H), and a word y, find the codeword c nearest to it.

- **For a codeword c, $Hc^T = 0$.** So if $y = c + e$, then $He^T = Hy^T = s$. For the codeword nearest y, the error term e has smallest Hamming weight. So

Input: A binary $m \times n$ matrix H, a vector $s \in \mathbb{F}_2^m$, and an integer $w > 0$.

Decide: Is there a vector $x \in \mathbb{F}_2^n$ of weight $\leq w$, such that $Hx^T = s$?
NP-completeness in coding theory

- **Maximum Likelihood Decoding**: Given a binary linear code (via its parity check matrix H), and a word y, find the codeword c nearest to it.

- For a codeword c, $Hc^T = 0$. So if $y = c + e$, then $He^T = Hy^T = s$. For the codeword nearest y, the error term e has smallest Hamming weight. So

Input: A binary $m \times n$ matrix H, a vector $s \in \mathbb{F}_2^m$, and an integer $w > 0$.

Decide: Is there a vector $x \in \mathbb{F}_2^n$ of weight $\leq w$, such that $Hx^T = s$?

- **The Minimum Distance problem**: $s = 0$ and we require $x \neq 0$. Also NP-hard.
More NP-completeness in coding

• Maximum Distance Separable Code Any linear code encoding \(k \) bits into \(n \) bits can have distance \(d \leq n - (k - 1) \). Does a given linear code achieve this maximum separation?
More NP-completeness in coding

- **Maximum Distance Separable Code** Any linear code encoding k bits into n bits can have distance $d \leq n - (k - 1)$. Does a given linear code achieve this maximum separation?

- The following related decision version is NP-hard:
More NP-completeness in coding

- Maximum Distance Separable Code: Any linear code encoding \(k \) bits into \(n \) bits can have distance \(d \leq n - (k - 1) \). Does a given linear code achieve this maximum separation?

- The following related decision version is NP-hard:

 Input: A prime \(p \), positive integers \(m \) and \(w \), and an \(r \times p^m \) matrix \(H \) over \(\mathbb{F}_{p^m} \).
More NP-completeness in coding

• Maximum Distance Separable Code Any linear code encoding \(k \) bits into \(n \) bits can have distance \(d \leq n - (k - 1) \). Does a given linear code achieve this maximum separation?

• The following related decision version is NP-hard:

 Input: A prime \(p \), positive integers \(m \) and \(w \), and an \(r \times p^m \) matrix \(H \) over \(\mathbb{F}_{p^m} \).

 Decide: Is there a non-zero vector \(x \) of weight \(\leq w \) and length \(p^m \) over \(\mathbb{F}_{p^m} \), such that \(Hx^T = 0 \)?
Completeness and implications

- If Π is complete for C, and an efficient algorithm for Π is found, then composing it with the reduction gives an efficient algorithm for every problem in C.
Completeness and implications

• If Π is complete for C, and an efficient algorithm for Π is found, then composing it with the reduction gives an efficient algorithm for every problem in C.

• Since SAT is NP-complete, $\text{SAT} \in P \iff P = \text{NP}$.
Completeness and implications

• If Π is complete for C, and an efficient algorithm for Π is found, then composing it with the reduction gives an efficient algorithm for every problem in C.

• Since SAT is NP-complete, $\text{SAT} \in P \iff P = \text{NP}$.

• Horn-SAT: the restriction of SAT to formulae in conjunctive normal form (CNF) where each clause has at most one negated literal. Horn-SAT is complete for P under $\frac{\log m}{m}$ reductions. Thus, $\text{HornSAT} \in \text{NLog} \iff \text{NLog} = P$.
Completeness and implications

• If Π is complete for C, and an efficient algorithm for Π is found, then composing it with the reduction gives an efficient algorithm for every problem in C.

• Since SAT is NP-complete, $\text{SAT} \in P \iff P = NP$.

• Horn-SAT: the restriction of SAT to formulae in conjunctive normal form (CNF) where each clause has at most one negated literal. Horn-SAT is complete for P under $\leq_{\log m}$ reductions. Thus, $\text{HornSAT} \in \text{NLog} \iff \text{NLog} = P$.

• 2-SAT: The restriction of SAT to formulae in CNF where each clause has at most 2 literals. 2-SAT is complete for NLog under $\leq_{\log m}$ reductions. Thus, $\text{2SAT} \in \text{Log} \iff \text{Log} = \text{NLog}$.
NLog-\textit{hardness}

Some NLog-complete problems:

\begin{itemize}
 \item Given a directed layered acyclic graph G and vertices s, t, does G have a path from s to t?
 \item 2SAT: Is a given 2CNF formula satisfiable?
 \item Given a perfect matching M in a bipartite graph G, does G have any other perfect matching?
\end{itemize}

Some NLog-hard problems in P:

\begin{itemize}
 \item Does a given graph have a perfect matching?
 \item Is a given integer matrix singular?
\end{itemize}
NLog-hardness of Singularity

We reduce Reachability to Non-Singularity.

Input: a directed layered acyclic graph G, vertices s, t at first and last layer respectively.

Output: a matrix A satisfying

$$\text{Det} A = 0 \iff s \not\rightarrow_G t$$

Strategy:

- Subdivide each edge of G.
- Add self-loops at all vertices except s.
- Add edge $t \rightarrow s$.
- Output adjacency matrix A of this graph H.
The construction
Why this works

- $s \sim t$ paths in $G \iff$ Cycle covers in H
Why this works

- $s \sim t$ paths in $G \iff$ Cycle covers in H
- cycle covers in $H \iff$ Terms in $\text{Det}(A)$
Why this works

• $s \rightsquigarrow t$ paths in $G \iff$ Cycle covers in H
• cycle covers in $H \iff$ Terms in $\text{Det}(A)$
• Value of term = Weight of cycle cover = 1
Why this works

- $s \sim t$ paths in $G \iff$ Cycle covers in H
- cycle covers in $H \iff$ Terms in $\text{Det}(A)$
- Value of term = Weight of cycle cover = 1
- Sign of term = $(-1)^{\#\text{even cycles}}$
Why this works

- $s \leadsto t$ paths in $\mathcal{G} \iff$ Cycle covers in \mathcal{H}
- cycle covers in $\mathcal{H} \iff$ Terms in $\det(A)$
- Value of term = Weight of cycle cover = 1
- Sign of term = $(-1)^{\text{#even cycles}}$
- But in \mathcal{H}, there are no even cycles.
 Hence $\det(A) = \#s \leadsto_{\mathcal{G}} t$
Radius of Singularity

Instance: A rational square matrix A, a rational θ.

Decide: Can A be made singular by changing each entry by at most θ?
Radius of Singularity in NP

Suppose there is a singular B with $|B_{ij} - A_{ij}| \leq \theta$ for each i, j. Can B be guessed in polynomial time? Depends on what precision B needs.
Radius of Singularity in NP

Suppose there is a singular B with $|B_{ij} - A_{ij}| \leq \theta$ for each i, j. Can B be guessed in polynomial time? Depends on what precision B needs.

Theorem: If there is such a singular matrix, then in fact there is a position k, l and singular B such that

- $A_{kl} - \theta \leq B_{kl} \leq A_{kl} + \theta$
- For $ij \neq kl$, $B_{ij} \in \{A_{ij} - \theta, A_{ij} + \theta\}$
Radius of Singularity in NP

Suppose there is a singular B with $|B_{ij} - A_{ij}| \leq \theta$ for each i, j. Can B be guessed in polynomial time? Depends on what precision B needs.

Theorem: If there is such a singular matrix, then in fact there is a position k, l and singular B such that

- $A_{kl} - \theta \leq B_{kl} \leq A_{kl} + \theta$
- For $ij \neq kl$, $B_{ij} \in \{A_{ij} - \theta, A_{ij} + \theta\}$

This implies that B_{kl}, and hence all of B, requires precision polynomial in A, θ.

Zero-on-an-Edge Lemma

- $p(x_1 \ldots x_t)$: a multilinear polynomial over \mathbb{Q}.
- Promise: $p(.)$ has a zero in the hypercube H defined by $[\ell_1, u_1], \ldots [\ell_t, u_t]$.
- Then: $p(.)$ has a zero (a_1, \ldots, a_t) on an edge of H i.e. for some k, $\forall (i \neq k), a_i \in \{\ell_i, u_i\}$.
- Proof: By induction.
NP-hardness of Radius of Singularity

Reduction from MaxCUT

Instance: An undirected simple graph $G = (V, E)$, an integer k.

Decide: Does G have a cut of size at least k? i.e. Can V be partitioned into S, \overline{S} so that $|E \cap (S \times \overline{S})| \geq k$?
The Construction

Define the matrix $N = (2m + 1)I - A$, where A is the adjacency matrix of G; i.e.

$$N_{ij} = \begin{cases}
2m + 1 & \text{if } i = j \\
-1 & \text{if } i \neq j \text{ and } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}$$
The Construction

Define the matrix $N = (2m + 1)I - A$, where A is the adjacency matrix of G; i.e.

$$N_{ij} = \begin{cases}
2m + 1 & \text{if } i = j \\
-1 & \text{if } i \neq j \text{ and } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}$$

N is not singular.
(Any strictly diagonally dominant matrix is non-singular.
$|A_{ii}| > \sum_{j \neq i} |A_{ij}|$)
The Construction

Define the matrix $N = (2m + 1)I - A$, where A is the adjacency matrix of G; i.e.

$$N_{ij} = \begin{cases}
2m + 1 & \text{if } i = j \\
-1 & \text{if } i \neq j \text{ and } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}$$

N is not singular.

Theorem: G has a cut of size k iff $M = N^{-1}$ can be made singular by changing each entry by at most

$$\frac{1}{(2m+1)n+4k-2m}.$$
Why it works:

Fix any $y, z \in \{-1, +1\}^n$.

λ: a non-zero eigen-value of $Nyz^T; Nyz^T x = \lambda x$.

• Claim 1: $\lambda = z^T Ny$.

Why it works:

Fix any \(y, z \in \{-1, +1\}^n \).

\(\lambda \): a non-zero eigen-value of \(Nyz^T \); \(Nyz^Tx = \lambda x \).

- Claim 1: \(\lambda = z^TNy \).
- Claim 2: Changes of \(1/\lambda \) suffice to make \(N^{-1} \) singular.

\[(\lambda I - Nyz^T)x = 0, \text{ so } (N^{-1} - \frac{1}{\lambda}yz^T)x = 0.\]
Why it works:

Fix any $y, z \in \{-1, +1\}^n$.

λ: a non-zero eigen-value of Nyz^T; $Ny z^T x = \lambda x$.

- **Claim 1:** $\lambda = z^T Ny$.
- **Claim 2:** Changes of $1/\lambda$ suffice to make N^{-1} singular.
- **Claim 3:** For $S = \{i \mid y_i = +1\}$, let cut size be $\delta(S)$. Then $y^T Ny = 4\delta(S) + (2m + 1)n - 2m$.

Straightforward manipulation; rewrite $y_i y_j$ as $(-1/2)((y_i - y_j)^2 - 2)$.
Why it works: ⇒

Fix any $y, z \in \{-1, +1\}^n$.

λ: a non-zero eigen-value of Nyz^T; $Nyz^Tx = \lambda x$.

• Claim 1: $\lambda = z^TNy$.
• Claim 2: Changes of $1/\lambda$ suffice to make N^{-1} singular.
• Claim 3: For $S = \{i \mid y_i = +1\}$, let cut size be $\delta(S)$. Then $y^TNy = 4\delta(S) + (2m + 1)n - 2m$.

G has a cut (S, \overline{S}) of size k ⇒ for the corresponding $-1, +1$ vector y: $y^TNy \geq 4k + (2m + 1)n - 2m$. Changes of $1/y^TNy$ suffice to singularize N^{-1}.
Why it works:

• Suppose a singular A satisfies

$$|A_{ij} - N_{ij}^{-1}| \leq \alpha = \frac{1}{4k + (2m + 1)n - 2m}$$
Why it works:

- Suppose a singular A satisfies
 \[|A_{ij} - N^{-1}_{ij}| \leq \alpha = \frac{1}{4k+(2m+1)n-2m} \]

- There is a $t \in [-1, +1]^n$, $z \in \{-1, +1\}^n$:
 $N^{-1} - \alpha t z^T$ is singular.

Why? Let $Ax = 0$ for some non-zero x. Choose

$z_i = \text{sgn}(x_i)$, $t_i = (N^{-1}x)_i/\alpha X$ where

$X = \sum_j |x_j| = z^T x$.
Why it works:

- Suppose a singular A satisfies
 $$|A_{ij} - N_{ij}^{-1}| \leq \alpha = \frac{1}{4k+(2m+1)n-2m}$$

- There is a $t \in [-1, +1]^n$, $z \in \{-1, +1\}^n$: $N^{-1} - \alpha tz^T$ is singular.

- There is a $y \in \{-1, +1\}^n$, $0 < \beta \leq 1$ such that $N^{-1} - \alpha \beta yz^T$ is singular.

Why? Use the Zero-on-an-Edge Lemma to get a t' on an edge. One endpoint y of this edge has sign opposite that of $\det(N^{-1})$; interpolate between \det of N^{-1} and $N^{-1} - \alpha yz^T$ to obtain β.
Why it works:

- Suppose a singular A satisfies
 $$|A_{ij} - N_{ij}^{-1}| \leq \alpha = \frac{1}{4k+(2m+1)n-2m}$$

- There is a $t \in [-1, +1]^n$, $z \in \{-1, +1\}^n$: $N^{-1} - \alpha tz^T$ is singular.

- There is a $y \in \{-1, +1\}^n$, $0 < \beta \leq 1$ such that $N^{-1} - \alpha \beta yz^T$ is singular.

- $\max_{y,z\in\{-1,+1\}^n} z^T Ny$ is achieved at $z = y$.
Why it works:

- Suppose a singular A satisfies $|A_{ij} - N_{ij}^{-1}| \leq \alpha = \frac{1}{4k + (2m+1)n - 2m}$

- There is a $t \in [-1, +1]^n$, $z \in \{-1, +1\}^n$: $N^{-1} - \alpha t z^T$ is singular.

- There is a $y \in \{-1, +1\}^n$, $0 < \beta \leq 1$ such that $N^{-1} - \alpha \beta y z^T$ is singular.

- $\max_{y,z \in \{-1, +1\}^n} z^T N y$ is achieved at $z = y$.

- $\frac{1}{\alpha \beta} N N^{-1} - N y z^T$ is singular; so $z^T N y = \frac{1}{\alpha \beta} \geq \frac{1}{\alpha}$, so $\exists u \in \{-1, +1\}^n : u^T N u \geq \frac{1}{\alpha}$, and the corresponding cut has size at least k.
Radius for smaller rank

Instance: A rational square matrix \(A \), a rational \(\theta \), an integer \(r \).

Decide: Can the rank of \(A \) be brought down to below \(r \) by changing each entry by at most \(\theta \)?

Complexity is still unknown. In fact, it is not even known to be decidable!
Thank You