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Matrix multiplication

Z11 -+ ZIn X, ... X],n y],1

Znl .-+ Znn Xl «eo Xnn Yn,1

n
Zij = in,kyk,j» 1<ij<n
k=1

> entries are variables

» allowed operations: addition, multiplication, scalar
multiplication

Yin

Ynn



Strassen's algorithm
( m zn ) _ < X1 X1 ) ( Yy yn )
n z X21 X2 Yy yn )

1 = (11 +x22) (Y11 +y22),
P2 = (x11 +x22)y11,

p3 =x11(y1z —yn),

pa = x22(—yn +y12),

Ps = (x11 +x12)y22,

Pe = (—x11 +x21) (Y11 +yY12)y
p7 = (x12 —x22) (Y21 +Y22).

(Zn Z12>:<P1+P4—P5+P7 P3 +Ps >
21 In P2 + Pa P1+P3—P2+Pps )



Strassen'’s algorithm (2)
» 7 mults, 18 adds
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Observation: Strassen’s algorithm works over any ring!

B

C(n) <7-C(n/2) +0(n?), c(1)=1

Recurse:

Theorem (Strassen)

We can multiply n x n-matrices with O(n'°g27) = O(n?81)
arithmetic operations



Tensor rank

In general:

» bilinear forms by (X,Y),...bn(X,Y)

> in variables X = {x1,...,x¢} and Y ={y1,...,Ym}.
Write

k m
Z Z thi,jXnyizj-.

i:
h=1 i=1 j=1

n
Z biZ
j=1

t= (th,i,j) e KF@ K™ @ K"

is the tensor corresponding to by,..., by.



Tensor rank

Definition
uRvwec UV ®W is called a triad “rank-one tensor”.

Definition (Rank)

R(t) is the smallest r such that there are rank-one tensors
t1y.oty witht =1t + -+ -+t

Lemma

lettce U VeWandt' e’ @ V' @ W',
» R(tpt') < R(t) + R(t)
» R(t®t') < R(t)R(t))



Sums and products

Directsumtdt' e (U U )@ (Ve V) (WaoeW):

Tensor product t®t' € (U U) @ (Ve V') e (WeW'):

2t




Matrix multiplication tensor
Example: 2 x 2-matrix multiplication (2,2, 2):

X111 X12 X221 X2

1 1 Yy
] 1 yz]
1 Y12
1 Y2
zZn  zn z22

In general: t(nn1),(1,17),(5,) = On,iduj 5/ -
Lemma

> R(<k)m)n>) = R(<n>k>m>) == R(<n>m>k>)-
» (k,m,n) ® (k/ym/,n’) = (kk/, mm’,nn’).



Strassen's algorithm and tensors

Observation: Tensor product = Recursion

Strassen’s algorithm:
> <2) 2, 2>®S = <25>28)28>
> R((2,2,2)%) <7

Definition (Exponent of matrix multiplication)
w = inf{t | R({n,n,n)) = O(n")}
Strassen: w < log, 7 < 2.81

Lemma
IFR((k, myn)) <, then w < 3 &I

logkmn -



What next?

Maybe we can multiply 2 x 2-matrices with 6 multiplications?

Theorem (Winograd)
R((2,2,2)) =7

Open question (not so open anymore)

Is there a small tensor (n,n,n), say, n < 10, which gives a better
bound on the exponent than Strassen?

» Smirnov: R((3,3,6)) <40 — w < 2.79



Border rank (example)
Polynomial multiplication mod X?:
(ap + a1X)(bg + b1X) = agby +(aiby + agbq)X + CL]b]XZ
~— @ —

fo 1

Observation
R(t) =3

However, t can be approximated by tensors of rank 2.

tle) = (1,e) @ (1,e) @ (0, ) + (1,0) ® (1,0) @ (1, —)




Proof of observation — restrictions

Definition
let A:U— U, B: V=V C:W— W' be homomorphism.
» (ABRC)(u®vew)=A(u)®B(v)® C(w)
» (A®B®C)t =31 ;A(w) ®B(vi) ® C(w;) for
t= Z:{:] U ®vi @ wy.
» t/ < tif there are A, B, C such that t' = (A ® B® C)t.
(“restriction”).

Lemma

» Ift’ <t, then R(t) < R(t)
» R(t) <1 ifft < (r).
((r) “diagonal” of size r.)



Proof of observation

v

Lett =) [ ;ui®vi®@w.
linfwy, ..., w,} = K2

v

v

Asume that w, = (1, %).

v

Let C be the projection along lin{w,} onto 1lin{(0, 1)}.

x| 1
110

v

(Il C)t= , which has rank 2.




Border rank

Definition
Let h € N, t € Kkxmxn,
1. Ru(t) = min{r | Ju, € K[el*,v, € K[e]™ w, € K[e]":

Y U, ®vp ®@w, = et + O(eM )
p=1
2. R(t) = m}inRh(t). R(t) is called the border rank of t.

Bini, Capovani, Lotti, Romani: R((2,2,3)) < 10.

Lemma
IfR((k,myn)) <, then w < 3- 1011;1%;111-
Corollary

w <L 2.79.



Schonhage's t-theorem

Schonhage: R((k, 1,n) @ (1, (k—1)(n —1),1)) < kn +1.

Theorem (Schonhage's T-theorem)
P

IfR(EP (ki, mi,ni)) <1 witht > p then w < 3T where T is
i=1

definled by

P
Zk -my-ny)t=r.
=]

Corollary

w < 2.55.



Strassen's tensor

S
R
b
I S
q
Str = Z(ei@) e ® ei+ey® e ® ei)
= (q,1,1) (1,1,q)

1 q 1 q
=) (eotee)@(eotee)@ei——e®en® ) e +O0(e)
€ €

i=1 i=1



Rank versus border rank

Theorem
R(Str) = 2q.

> Let Str=3 | ;Ui @vi @ wi.

» W.lo.g. assume that u; ¢ lin{eo,...,eq1}.

> Let A be the projection along u, onto lin{ey,...,eq1}.

> Let B be the projection along eq onto lin{eo, ..., eq1}.

» RIA®I® B)Str) < R(Str) —1.

» (A®I® B)Str is like Str with one inner tensor now being
(q—1,1,1).

» Do this g times and kill g triads.

» We are left with a matrix of rank q.

Gap of almost 2 between rank and border rank.



Laser method

Think of Strassen’s tensor having an outer and an inner structure:
Cut Str into (combinatorial) cubiods!

» inner tensors: (q,1,1), (1,1,q) 1,/,/,,:,;:;"1,,, ,,,,,, 1

» outer structure: Put 1 in every cubiod
that is nonzero.
— (1,2,1).

(Str @7t Str @7t% Str)®S has
> inner tensors (x,Vy,z) with xyz = g%,

» outer tensor (25,25, 25).



Degeneration

Definition
T
L Lett=) u, ®v,®@w, € K*mxn A(e) € K[e]**',
p=1
B(e) € K[e]™ ™ and C(e) € K[e]™™ . Define

(A(e) @ B(e) ® C(e))t = Z A(e)u, ® B(e)vp, ® C(e)wy.
p=1

2. tis a degeneration of t' € Kkxmxn (“tgat'"),
if there are A(e), B(e), C(e), and g such that

et = (A(e) ® B(e) ® C(e))t’ + O(e9H).

Remark
Rt)<r&t<(r)



Laser method (2)

A degeneration (A(e),B(e), C(€)) is called monomial if all entries
are monomials.

Lemma (Strassen)

([3n%]) < (n,n,n) by a monomial degeneration.

> inner tensors (x,y,z) with xyz = q°*,
» outer tensor (2%,2%,2%).
— 2% independent matrix products with (x,y,z) with xyz = ¢

Now apply the t-theorem!

Corollary (Strassen)
w <248



Coppersmith—Winograd tensor

q
e CW = Z e (eo+ €%e)) ® (e + €2e;) @ (eo + €€;)

i
q q q

—(eo+€) e)@(e+e ) e)@(e+e ) e)
i1 i1 i

+(1—qe)-e)®ey® e
+ 0(e®)



Coppersmith—Winograd tensor

Remark (last time, a doable open question)

R(CW) =2q + 1



Laser method (3)

CW has
» inner structure (q,1,1), (1,q,1), (1,1,q).

» outer structure

There is a general method how to degenerate large diagonals from
arbitrary tensors.
— apply to outer tensor

Corollary (Coppersmith & Winograd)
w <241

Coppersmith & Winograd, Stothers, Vassilevska-Williams, LeGall:
w<237...
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What did we learn so far?

» How to multiply matrices of astronomic sizes fast!

> If we want to multiply matrices of astronomic sizes even
faster, we need tensors

» with border rank close to max{dim U, dim V, dim W}
» with a “rich” structure

> or completely new methods.



Cheap approaches that do not work (not yet?)

R R
2,2,2) |7 7
(2,2,3) | 11 [9,10]
(2,2,4) | 14 [12,14]*
(2,3,3) | [14.15] [10,15]*
(3,3,3) | [19,23] [15,20]

Main tools:
Rank: substition method (Pan), de Groote's twist of it

Border rank: vanishing equations (Strassen, Lickteig, Landsberg &
Ottaviani)
in combination with substitution method (Landsberg
& Michalek, B & Lysikov)

* Did not find any upper bounds



Characterization problem

Definition

> Su(q) ={t e K"®@K"® K™ [ R(t) < q},
» Xn(q) ={t e K"®K"®@ K" | R(t) < q}.

» These definitions are in “complexity-theoretic” terms.

> We need “algebraic” terms.
But: {t|t < (q)} is not very useful

> We need “easy to check algebraic” criteria.

Remark: all tensors considered are tight.
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Sn(n)

Theorem
te Sp(n) ifft=(n)

The multiplication in any finite dimensional algebra A can be
described by a set of bilinear forms. — tensor ta

Example:
» Ae =K[X]/(X" —€) = K"
» A — KIXI/(X™M)
» R(A)=2n—1.

Theorem (Alder—Strassen)

R(A) > 2dim A — number of maximal twosided ideals.



Definition
Let te U® V®W. tis 1y-generic (1y, Tw) if the U-slices (V,
W) contain an invertible element.

Proposition (B & Lysikov)

Let t be 1y- and 1y-generic. Then there is an algebra A with
structural tensor ta such that ty = t.



Xn(n)

Theorem (B & Lysikov)

Let A and B be algebras with tensors ta and tg. Then
ta € GLT>E3 tg iffta € GLy -tg.

Theorem (B & Lysikov)

Let t be 1y- and 1y-generic. Then t € X (n) iff there is an
algebra A such that tpa =t and ta € GL;, -(n)



Smoothable algebras

Definition
An algebra A of dimension n of the form K[Xj,...,X;,]/I for

some ideal I is called smoothable if I is a degeneration of some
ideal whose zero set consists of n distinct points.

Theorem (B & Lysikov)

Let t be 1y- and 1y-generic. Then t € X;,(n) iff there is a
smoothable algebra A such that tp = t.



Examples
Cartwright et al.:

» All (commutative) algebras of dimension < 7 are smoothable.
> All algebras generated by two elements are smoothable.
» All algebras with dimrad(A)?/rad(A)3 =1

> All algebras defined by a monomial ideal.

» Str' has minimal border rank. Its structural tensor is
isomorphic to

k[X1,.. o, Xql/(XiX; 11 <1,j < q)

» CW™ has minimal border rank. Its structural tensor is
isomorphic to

KX, ..oy Xql /(XiXj, XE = X3, XF 11 # )



Comon's conjecture

> symmetric tensor = invariant under permutation of dimensions

> symmetric rank = use symmetric rank-one tensors

Conjecture (Comon)

For symmetric tensors, the rank equals the symmetric rank.

Proposition

The border rank Comon conjecture is true for 1-generic tensors of
minimal border rank.



Xn(Mm+1)

Theorem

te Sa(n+ 1)\ Sw(n) ifft is isomorphic to the multiplication
tensors in the algebras

» K[X]/(X?) x K2 or
» T, x KN3,

where T, is the algebra of upper triangular 2 x 2-matrices.

Open question (Doable)

What about Xn(n + 1) (for 1-generic tensors)?



The asymptotic rank of CW

» We know that R(ICW) = q + 2.

» For fast matrix multiplication, good upper bounds on
R(CW?N) are sufficient.

> In particular, B(CW?N)VN — 3 implies w = 2.

Theorem (B. & Lysikov)
R(CWEN) > (q + )N + 2N,



