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Introduction
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Non-commutative circuits

• F commutative field.

• Non-commutative : xy ≠ yx → distinguish left and right arguments

in a computation gate.

• Various motivations
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Some results

• / No better lower bound for NC circuits than for commutative

circuits

But for ABPs (Algebraic Branching Programs) :

• , (Nisan 1991) Exact characterization of complexity

• , (Nisan 1991) Exponential lower bounds for the permanent

• , (Arvind, Joglekar, Srinivasan 2009) Deterministic poly-time PIT

Also (Limaye,Malod,Srinivasan 2016) Exponentiel lower bounds for

skew circuits
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Nisan’s results



ABP (Branching programs)
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ABP (Branching programs)

s t (x1 − x2)(3x2)(−x2)
x1
− x2

x3
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3x22x1
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x3
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2x3

• DAG : source s, sink t, edges with linear forms

• Weight of a path : product of edge weights

• Computed polynomial : sum of path weights from s to t.
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Coefficient matrices

• Π = (Y ,Z) partition of [d]

d

• f = ∑
m
αm.m, homogeneous,

degree d , n variables

• Define matrix MΠ(f )
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m∣Y = m1

m∣Z = m2

• Complexity measure : rank(MΠ(f )).
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Exercise: the palindrome polynomial

w = (w1, . . . ,wd/2) ∈ [n]d/2 Ð→ wR = (wd/2, . . . ,w1)

x̃w = xw1xw2 . . . xwd/2

Pald X = ∑
w∈[n]d/2

x̃w ⋅ x̃wR

Pald+1 X =
n

∑
i=1

xi ⋅ Pald X ⋅ xi

What is the matrix if we cut in the middle?
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Exercise: the palindrome polynomial
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• Πi = ({1,2, . . . , k},{k + 1, k + 2, . . . ,d})

k d − k

Theorem (Nisan, 1991)

For any homogeneous polynomial f of degree d , the size of a smallest

homogeneous algebraic branching program for f is equal to

d

∑
k=0

rank(Mk(f ))

Corollary

Any homogeneous ABP computing the palindrome of degree d over n

variables has size ≥ nd/2

Any homogeneous ABP computing the permanent has size ≥ 2n
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Proof (lower bound)

level k

s t
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coef(m) btw

s and vi
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vi and t
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t

Mk(f ) = LkRk and rank(Mk(f )) ≤ t
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Proof (upper bound)

level k

s t

v1

vi

vt

level k + 1

w1

wj

wp

• suppose rank(Lk) < t, then there is a column i which is a linear

combination of the others

• the polynomial computed between s and vi is a linear combination of

the polynomials computed by the other vertices v ′j s

• we could delete vi and update the weights from level k to level k + 1.

• so rank(Lk) = rank(Rk) = t = rank(Mk(f )).
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Unambiguous circuits



Parse trees
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Parse trees
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Figure 1: val(T) = zab

• Each parse tree computes a monomial.

Lemma

f = ∑
T
val(T )
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Parse trees of ABPs

ABP Right-skew Circuits

Définition

A circuit is unambiguous if all its parse trees are isomorphic.
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Unambiguous circuits
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Canonical circuits
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Any unambiguous circuit can be rendered canonical at a polynomial cost.
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Type of a gate

deg. i

+
α

×

×

+

+
β1
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βk
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p i

f

d − p − i
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Results

Theorem

Let P be a homogeneous polynomial of degree d and T a shape with d

leaves. Then the minimal number of addition gates needed to compute P

by a canonical unambiguous circuit with shape T is exactly equal to

∑
(i,p)∈S

rank (M(i,p)(P)) ,

where S is the set of all existing types of +-gates in the shape T .

Corollary

Any UC computing the permanent has size 2Ω(n)
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Proof (lower bound)

Parse tree shape

Π(p,i) =

p i d − p − i

• rg(MΠ(p,i)(f )) ≤ number of gates of type (p, i)
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Proof (upper bound)

Clearly it works
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Proof (upper bound)

Clearly it works
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Other results



PIT

Hadamard product (Arvind, Joglekar, Srinivasan)

Given two polynomials P = ∑x⃗ ax⃗ x⃗ and Q = ∑x⃗ bx⃗ x⃗ , the Hadamard

product of P and Q, written P ⊙Q, equals ∑x⃗ ax⃗bx⃗ x⃗ .

Hadamard product of two unambiguous circuits

Let C and D be two unambiguous circuits in canonical form, of the same

shape, and of size s and s ′, that compute two polynomials P and Q. Then

P ⊙Q is computed by an unambiguous circuit of size at most ss ′;

moreover, this circuit can be constructed in polynomial time.

Theorem

There is a deterministic polynomial-time algorithm for PIT for polynomials

computed by non-commutative unambiguous circuits over R (or C).
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Relationship to other classes

ABP ⊊ UC

There are polynomials computed by polynomial-size UC that need

exponential-size ABPs.

UC and skew are incomparable

There are polynomials computed by polynomial-size UC that need

exponential-size skew circuits.

There are polynomials computed by polynomial-size skew circuits that

need exponential-size UC.
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The future

• Lower bounds for circuits with “similar” shapes.

• Lower bounds for circuits with not too many shapes.

• Poly-time PIT for a sum of UC circuits.
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The future (much later?)

Lower bounds for general non-commutative circuits?

Theorem (Limaye, Malod, Srinivasan 2016)

There exists a polynomial computed by a small non-commutative circuit

which is full rank for any partition.
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Thank you!
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