
Succinct Hitting Sets
and

Barriers to Proving
Algebraic Circuits Lower Bounds

Alternate Title:

How NOT to prove
Algebraic Circuits Lower Bounds

Ben Lee Volk

Joint with

Michael A. Forbes
Amir Shpilka

Succinct Hitting Sets
and

Barriers to Proving
Algebraic Circuits Lower Bounds

Alternate Title:

How NOT to prove
Algebraic Circuits Lower Bounds

Ben Lee Volk

Joint with

Michael A. Forbes
Amir Shpilka

Why is it hard to prove circuit lower bounds?
(One) Answer: natural proofs barrier [Razborov-Rudich]:

“A computationally-bounded observer cannot distinguish
between the truth table of a random function with small circuit
and that of a truly random function (assuming some crypto). So
every lower bound proof attempt which yields such an algorithm
cannot work.”

Why is it hard to prove circuit lower bounds?
(One) Answer: natural proofs barrier [Razborov-Rudich]:
“A computationally-bounded observer cannot distinguish
between the truth table of a random function with small circuit
and that of a truly random function (assuming some crypto). So
every lower bound proof attempt which yields such an algorithm
cannot work.”

Why is it hard to prove circuit lower bounds?
(One) Answer: natural proofs barrier [Razborov-Rudich]:
“A computationally-bounded observer cannot distinguish
between the truth table of a random function with small circuit
and that of a truly random function (assuming some crypto). So
every lower bound proof attempt which yields such an algorithm
cannot work.”

Natural Proofs
Def: A property S of boolean functions is natural if it is:

1. Useful: if f has S then f doesn’t have a small ckt.
2. Large: random functions have S with large probability.
3. Constructive: Given truth table of f of size N = 2n, there is

an algorithm for deciding whether f ∈ S with running time
poly(N) = 2O(n).

natural proof: a lower bound proof which exhibits a natural
property.
[Razborov-Rudich]: Most known lower bounds are natural and if
there’s a pseudorandom function in C then no natural lower
bound against C .

Natural Proofs
Def: A property S of boolean functions is natural if it is:

1. Useful: if f has S then f doesn’t have a small ckt.

2. Large: random functions have S with large probability.
3. Constructive: Given truth table of f of size N = 2n, there is

an algorithm for deciding whether f ∈ S with running time
poly(N) = 2O(n).

natural proof: a lower bound proof which exhibits a natural
property.
[Razborov-Rudich]: Most known lower bounds are natural and if
there’s a pseudorandom function in C then no natural lower
bound against C .

Natural Proofs
Def: A property S of boolean functions is natural if it is:

1. Useful: if f has S then f doesn’t have a small ckt.
2. Large: random functions have S with large probability.

3. Constructive: Given truth table of f of size N = 2n, there is
an algorithm for deciding whether f ∈ S with running time
poly(N) = 2O(n).

natural proof: a lower bound proof which exhibits a natural
property.
[Razborov-Rudich]: Most known lower bounds are natural and if
there’s a pseudorandom function in C then no natural lower
bound against C .

Natural Proofs
Def: A property S of boolean functions is natural if it is:

1. Useful: if f has S then f doesn’t have a small ckt.
2. Large: random functions have S with large probability.
3. Constructive: Given truth table of f of size N = 2n, there is

an algorithm for deciding whether f ∈ S with running time
poly(N) = 2O(n).

natural proof: a lower bound proof which exhibits a natural
property.
[Razborov-Rudich]: Most known lower bounds are natural and if
there’s a pseudorandom function in C then no natural lower
bound against C .

Natural Proofs
Def: A property S of boolean functions is natural if it is:

1. Useful: if f has S then f doesn’t have a small ckt.
2. Large: random functions have S with large probability.
3. Constructive: Given truth table of f of size N = 2n, there is

an algorithm for deciding whether f ∈ S with running time
poly(N) = 2O(n).

natural proof: a lower bound proof which exhibits a natural
property.

[Razborov-Rudich]: Most known lower bounds are natural and if
there’s a pseudorandom function in C then no natural lower
bound against C .

Natural Proofs
Def: A property S of boolean functions is natural if it is:

1. Useful: if f has S then f doesn’t have a small ckt.
2. Large: random functions have S with large probability.
3. Constructive: Given truth table of f of size N = 2n, there is

an algorithm for deciding whether f ∈ S with running time
poly(N) = 2O(n).

natural proof: a lower bound proof which exhibits a natural
property.
[Razborov-Rudich]: Most known lower bounds are natural and if
there’s a pseudorandom function in C then no natural lower
bound against C .

Algebraic circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x1, x2, x3) ∈ F[x1, x2, x3]

Lower bounds for Algebraic Circuits
...are also pretty hard.

We can prove lower bounds for restricted models, but all lower
bounds eventually also apply to polynomials we think of as “easy”.
Most lower bounds seem “natural”, but unclear whether there are
pseudorandom functions computed by low-degree algebraic
circuits.
(and even if not, maybe there are such functions that are only
secure against algebraic circuits?)
Can we identify formal barriers?
(also asked by [Aaronson-Drucker] and [Grochow])

Lower bounds for Algebraic Circuits
...are also pretty hard.
We can prove lower bounds for restricted models, but all lower
bounds eventually also apply to polynomials we think of as “easy”.

Most lower bounds seem “natural”, but unclear whether there are
pseudorandom functions computed by low-degree algebraic
circuits.
(and even if not, maybe there are such functions that are only
secure against algebraic circuits?)
Can we identify formal barriers?
(also asked by [Aaronson-Drucker] and [Grochow])

Lower bounds for Algebraic Circuits
...are also pretty hard.
We can prove lower bounds for restricted models, but all lower
bounds eventually also apply to polynomials we think of as “easy”.
Most lower bounds seem “natural”, but unclear whether there are
pseudorandom functions computed by low-degree algebraic
circuits.

(and even if not, maybe there are such functions that are only
secure against algebraic circuits?)
Can we identify formal barriers?
(also asked by [Aaronson-Drucker] and [Grochow])

Lower bounds for Algebraic Circuits
...are also pretty hard.
We can prove lower bounds for restricted models, but all lower
bounds eventually also apply to polynomials we think of as “easy”.
Most lower bounds seem “natural”, but unclear whether there are
pseudorandom functions computed by low-degree algebraic
circuits.
(and even if not, maybe there are such functions that are only
secure against algebraic circuits?)

Can we identify formal barriers?
(also asked by [Aaronson-Drucker] and [Grochow])

Lower bounds for Algebraic Circuits
...are also pretty hard.
We can prove lower bounds for restricted models, but all lower
bounds eventually also apply to polynomials we think of as “easy”.
Most lower bounds seem “natural”, but unclear whether there are
pseudorandom functions computed by low-degree algebraic
circuits.
(and even if not, maybe there are such functions that are only
secure against algebraic circuits?)
Can we identify formal barriers?

(also asked by [Aaronson-Drucker] and [Grochow])

Lower bounds for Algebraic Circuits
...are also pretty hard.
We can prove lower bounds for restricted models, but all lower
bounds eventually also apply to polynomials we think of as “easy”.
Most lower bounds seem “natural”, but unclear whether there are
pseudorandom functions computed by low-degree algebraic
circuits.
(and even if not, maybe there are such functions that are only
secure against algebraic circuits?)
Can we identify formal barriers?
(also asked by [Aaronson-Drucker] and [Grochow])

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.
3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)
equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.
3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)
equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.

3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)
equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.
3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)
equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.
3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)

equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.
3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)
equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Many lower bounds for restricted models of algebraic circuits
have this form:

1. given f , construct some matrix M f whose entries are
coefficients of f .

2. argue that if f is computed by a small ckt, rank(M f) = small.
3. show some explicit f0 with rank(M f0) = large.

(examples: evaluation dimension, partial derivatives, shifted
partial derivatives, ...)
equivalently: for some r × r submatrix, det(M ′f0) ̸= 0, while
det(M ′f) = 0 for all simple f .

Thus, the property {g : det(M ′g) ̸= 0} is useful, constructive
(determinant is efficiently computable) and large.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C
2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)
Important: D is an N-variate polynomial for N =

�n+d
d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)
Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.
[Grochow]: almost all known lower bounds can be cast in this
form.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C

2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)
Important: D is an N-variate polynomial for N =

�n+d
d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)
Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.
[Grochow]: almost all known lower bounds can be cast in this
form.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C
2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)
Important: D is an N-variate polynomial for N =

�n+d
d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)
Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.
[Grochow]: almost all known lower bounds can be cast in this
form.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C
2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)

Important: D is an N-variate polynomial for N =
�n+d

d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)
Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.
[Grochow]: almost all known lower bounds can be cast in this
form.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C
2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)
Important: D is an N-variate polynomial for N =

�n+d
d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)

Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.
[Grochow]: almost all known lower bounds can be cast in this
form.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C
2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)
Important: D is an N-variate polynomial for N =

�n+d
d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)
Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.

[Grochow]: almost all known lower bounds can be cast in this
form.

Algebraically Natural Lower Bounds
Def: A (distinguisher) polynomial D ̸≡ 0 is an algebraic natural
proof against a class C if

1. (Usefulness) D(coeff(f)) = 0 for all f ∈ C
2. (Constructiveness) D has a small algebraic circuit

(largeness comes for free)
Important: D is an N-variate polynomial for N =

�n+d
d

�
(if we deal

with n-variate degree d polynomials) or N = 2n (if we deal with
multilinear polynomials)
Toy example: C is the class of perfect squares among
polynomials of the form ax2 + bx + c, and D(a, b, c) = b2 − 4ac.
[Grochow]: almost all known lower bounds can be cast in this
form.

Geometric Complexity Theory
[Mulmuley-Sohoni]

VP

VP

det

per

VP is a zero set of a set of polynomials T . What is the complexity
of T ?

Geometric Complexity Theory
[Mulmuley-Sohoni]

VP

VP

det

per

VP is a zero set of a set of polynomials T . What is the complexity
of T ?

Geometric Complexity Theory
[Mulmuley-Sohoni]

VP

VP

det

per

VP is a zero set of a set of polynomials T . What is the complexity
of T ?

Polynomial Identity Testing
Given an algebraic circuit C , decide deterministically whether C
computes the zero polynomial.

Black-box: compute a hitting set H , i.e., a set such that for
every C ∈ C there is α ∈H such that C(α) ̸= 0.
Suppose D is a distinguisher for a class C . Then D ̸≡ 0, and yet
D(coeff(f)) = 0 for all f ∈ C .
=⇒ {coeff(f) : f ∈ C} is not a hitting set for D.
In other words: if {coeff(f) : f ∈ C} is a hitting set for a class D,
then no natural proof for C with the distinguisher coming from D.

Polynomial Identity Testing
Given an algebraic circuit C , decide deterministically whether C
computes the zero polynomial.
Black-box: compute a hitting set H , i.e., a set such that for
every C ∈ C there is α ∈H such that C(α) ̸= 0.

Suppose D is a distinguisher for a class C . Then D ̸≡ 0, and yet
D(coeff(f)) = 0 for all f ∈ C .
=⇒ {coeff(f) : f ∈ C} is not a hitting set for D.
In other words: if {coeff(f) : f ∈ C} is a hitting set for a class D,
then no natural proof for C with the distinguisher coming from D.

Polynomial Identity Testing
Given an algebraic circuit C , decide deterministically whether C
computes the zero polynomial.
Black-box: compute a hitting set H , i.e., a set such that for
every C ∈ C there is α ∈H such that C(α) ̸= 0.
Suppose D is a distinguisher for a class C . Then D ̸≡ 0, and yet
D(coeff(f)) = 0 for all f ∈ C .

=⇒ {coeff(f) : f ∈ C} is not a hitting set for D.
In other words: if {coeff(f) : f ∈ C} is a hitting set for a class D,
then no natural proof for C with the distinguisher coming from D.

Polynomial Identity Testing
Given an algebraic circuit C , decide deterministically whether C
computes the zero polynomial.
Black-box: compute a hitting set H , i.e., a set such that for
every C ∈ C there is α ∈H such that C(α) ̸= 0.
Suppose D is a distinguisher for a class C . Then D ̸≡ 0, and yet
D(coeff(f)) = 0 for all f ∈ C .
=⇒ {coeff(f) : f ∈ C} is not a hitting set for D.

In other words: if {coeff(f) : f ∈ C} is a hitting set for a class D,
then no natural proof for C with the distinguisher coming from D.

Polynomial Identity Testing
Given an algebraic circuit C , decide deterministically whether C
computes the zero polynomial.
Black-box: compute a hitting set H , i.e., a set such that for
every C ∈ C there is α ∈H such that C(α) ̸= 0.
Suppose D is a distinguisher for a class C . Then D ̸≡ 0, and yet
D(coeff(f)) = 0 for all f ∈ C .
=⇒ {coeff(f) : f ∈ C} is not a hitting set for D.
In other words: if {coeff(f) : f ∈ C} is a hitting set for a class D,
then no natural proof for C with the distinguisher coming from D.

Succinct Hitting Sets
Def: Let C ⊆ F[x1, . . . , xn] be a class of degree d polynomials,
and D ⊆ F[X1, . . . , XN] for N =

�n+d
d

�
. C is a succinct hitting set

for D if H := {coeff(f) : f ∈ C} is a hitting set for D.

Thm: If C is a succinct hitting set for D, no algebraically natural
proof against C with the distinguisher coming from D.
Proof: If D ∈ D is non-zero then D does not vanish on H .
(also observed independently by [Grochow-Kumar-Saraf-Saks])
Question: are poly(n) size and poly(n) degree circuits a hitting
sets for poly(N) size and poly(N) degree circuits?
(“does VP hit VP?”)

Succinct Hitting Sets
Def: Let C ⊆ F[x1, . . . , xn] be a class of degree d polynomials,
and D ⊆ F[X1, . . . , XN] for N =

�n+d
d

�
. C is a succinct hitting set

for D if H := {coeff(f) : f ∈ C} is a hitting set for D.
Thm: If C is a succinct hitting set for D, no algebraically natural
proof against C with the distinguisher coming from D.

Proof: If D ∈ D is non-zero then D does not vanish on H .
(also observed independently by [Grochow-Kumar-Saraf-Saks])
Question: are poly(n) size and poly(n) degree circuits a hitting
sets for poly(N) size and poly(N) degree circuits?
(“does VP hit VP?”)

Succinct Hitting Sets
Def: Let C ⊆ F[x1, . . . , xn] be a class of degree d polynomials,
and D ⊆ F[X1, . . . , XN] for N =

�n+d
d

�
. C is a succinct hitting set

for D if H := {coeff(f) : f ∈ C} is a hitting set for D.
Thm: If C is a succinct hitting set for D, no algebraically natural
proof against C with the distinguisher coming from D.
Proof: If D ∈ D is non-zero then D does not vanish on H .

(also observed independently by [Grochow-Kumar-Saraf-Saks])
Question: are poly(n) size and poly(n) degree circuits a hitting
sets for poly(N) size and poly(N) degree circuits?
(“does VP hit VP?”)

Succinct Hitting Sets
Def: Let C ⊆ F[x1, . . . , xn] be a class of degree d polynomials,
and D ⊆ F[X1, . . . , XN] for N =

�n+d
d

�
. C is a succinct hitting set

for D if H := {coeff(f) : f ∈ C} is a hitting set for D.
Thm: If C is a succinct hitting set for D, no algebraically natural
proof against C with the distinguisher coming from D.
Proof: If D ∈ D is non-zero then D does not vanish on H .
(also observed independently by [Grochow-Kumar-Saraf-Saks])

Question: are poly(n) size and poly(n) degree circuits a hitting
sets for poly(N) size and poly(N) degree circuits?
(“does VP hit VP?”)

Succinct Hitting Sets
Def: Let C ⊆ F[x1, . . . , xn] be a class of degree d polynomials,
and D ⊆ F[X1, . . . , XN] for N =

�n+d
d

�
. C is a succinct hitting set

for D if H := {coeff(f) : f ∈ C} is a hitting set for D.
Thm: If C is a succinct hitting set for D, no algebraically natural
proof against C with the distinguisher coming from D.
Proof: If D ∈ D is non-zero then D does not vanish on H .
(also observed independently by [Grochow-Kumar-Saraf-Saks])
Question: are poly(n) size and poly(n) degree circuits a hitting
sets for poly(N) size and poly(N) degree circuits?
(“does VP hit VP?”)

Algebraic Natural Proofs Barrier
Let H = {coeff(f) : f ∈ VP(n)}. If H is a hitting set for VP(N)
then there are no VP-algebraic natural proofs against VP.

(note: H may a-priori be infinite but we’ll soon see that this
actually implies there exists some small H ′)

Algebraic Natural Proofs Barrier
Let H = {coeff(f) : f ∈ VP(n)}. If H is a hitting set for VP(N)
then there are no VP-algebraic natural proofs against VP.

(note: H may a-priori be infinite but we’ll soon see that this
actually implies there exists some small H ′)

Algebraic Natural Proofs Barrier
Let H = {coeff(f) : f ∈ VP(n)}. If H is a hitting set for VP(N)
then there are no VP-algebraic natural proofs against VP.

(note: H may a-priori be infinite but we’ll soon see that this
actually implies there exists some small H ′)

Generators
Def: A polynomial map G : Fℓ→ FN is a generator for a class C
if for every non-zero F ∈ C , F(G (y)) ̸≡ 0.

(want: deg poly(N), ℓ as small as possible)
generators ⇐⇒ hitting sets
(=⇒ : evaluate. ⇐= : interpolate.)
succinct hitting sets =⇒ ?

Generators
Def: A polynomial map G : Fℓ→ FN is a generator for a class C
if for every non-zero F ∈ C , F(G (y)) ̸≡ 0.
(want: deg poly(N), ℓ as small as possible)

generators ⇐⇒ hitting sets
(=⇒ : evaluate. ⇐= : interpolate.)
succinct hitting sets =⇒ ?

Generators
Def: A polynomial map G : Fℓ→ FN is a generator for a class C
if for every non-zero F ∈ C , F(G (y)) ̸≡ 0.
(want: deg poly(N), ℓ as small as possible)
generators ⇐⇒ hitting sets

(=⇒ : evaluate. ⇐= : interpolate.)
succinct hitting sets =⇒ ?

Generators
Def: A polynomial map G : Fℓ→ FN is a generator for a class C
if for every non-zero F ∈ C , F(G (y)) ̸≡ 0.
(want: deg poly(N), ℓ as small as possible)
generators ⇐⇒ hitting sets
(=⇒ : evaluate. ⇐= : interpolate.)

succinct hitting sets =⇒ ?

Generators
Def: A polynomial map G : Fℓ→ FN is a generator for a class C
if for every non-zero F ∈ C , F(G (y)) ̸≡ 0.
(want: deg poly(N), ℓ as small as possible)
generators ⇐⇒ hitting sets
(=⇒ : evaluate. ⇐= : interpolate.)
succinct hitting sets =⇒ ?

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .
2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .

2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .
2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .
2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

G(x , y) = 1 · (y1 + y2) + x1 · (y1 y3
2) + x2 · (y2

1 + y2) + x1 x2 · 1
G (y) = (y1 + y2 , y1 y3

2 , y2
1 + y2 , 1)

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .
2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

G(x , y) = 1 · (y1 + y2) + x1 · (y1 y3
2) + x2 · (y2

1 + y2) + x1 x2 · 1
G (y) = (y1 + y2 , y1 y3

2 , y2
1 + y2 , 1)

{G(x,α) : α ∈ Fℓ} is a C -succinct hitting set against D.
So succinct generator =⇒ succinct hitting set (and even a
“uniform” one).

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .
2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

Aside: why not just require G(x,y) ∈ C ?

Succinct Generator
Def: A polynomial G(x,y) is a C -succinct generator for D if:

1. For every α, G(x,α) ∈ C .
2. The polynomial map G = coeffx(G(x,y)) is a generator for D.

Aside: why not just require G(x,y) ∈ C ?
We can, but

1. unnecessary for succinct hitting sets which imply barriers
2. G(x,α) might be in even smaller class (e.g., if y has high deg)

Succinct generators and hitting sets
Recall: succinct generator =⇒ succinct hitting sets.

Other direction?
Interpolating has complexity poly(|H |) which is not succinct.
But still true because of the existence of universal circuits.
In particular, if H := {coeff(f) : f ∈ VP(n)} is an (infinite) hitting
set for VP(N), there is a Npoly log(N) size hitting set (H is in the
image of a universal circuit).

Succinct generators and hitting sets
Recall: succinct generator =⇒ succinct hitting sets.
Other direction?

Interpolating has complexity poly(|H |) which is not succinct.
But still true because of the existence of universal circuits.
In particular, if H := {coeff(f) : f ∈ VP(n)} is an (infinite) hitting
set for VP(N), there is a Npoly log(N) size hitting set (H is in the
image of a universal circuit).

Succinct generators and hitting sets
Recall: succinct generator =⇒ succinct hitting sets.
Other direction?
Interpolating has complexity poly(|H |) which is not succinct.

But still true because of the existence of universal circuits.
In particular, if H := {coeff(f) : f ∈ VP(n)} is an (infinite) hitting
set for VP(N), there is a Npoly log(N) size hitting set (H is in the
image of a universal circuit).

Succinct generators and hitting sets
Recall: succinct generator =⇒ succinct hitting sets.
Other direction?
Interpolating has complexity poly(|H |) which is not succinct.
But still true because of the existence of universal circuits.

In particular, if H := {coeff(f) : f ∈ VP(n)} is an (infinite) hitting
set for VP(N), there is a Npoly log(N) size hitting set (H is in the
image of a universal circuit).

Succinct generators and hitting sets
Recall: succinct generator =⇒ succinct hitting sets.
Other direction?
Interpolating has complexity poly(|H |) which is not succinct.
But still true because of the existence of universal circuits.
In particular, if H := {coeff(f) : f ∈ VP(n)} is an (infinite) hitting
set for VP(N), there is a Npoly log(N) size hitting set (H is in the
image of a universal circuit).

Evidence?
Conjecture: VP hits VP.

How to obtain evidence to support this conjecture?
Can we construct algebraic pseudorandom functions?
[Aaronson-Drucker]’s candidate:

det


ℓi, j(x)

where ℓi, j’s are random linear functions.
Conjecture: this is pseudorandom (maybe only against alg ckts?)
Challange: establish this under some crypto hardness
assumption.

Evidence?
Conjecture: VP hits VP.
How to obtain evidence to support this conjecture?

Can we construct algebraic pseudorandom functions?
[Aaronson-Drucker]’s candidate:

det


ℓi, j(x)

where ℓi, j’s are random linear functions.
Conjecture: this is pseudorandom (maybe only against alg ckts?)
Challange: establish this under some crypto hardness
assumption.

Evidence?
Conjecture: VP hits VP.
How to obtain evidence to support this conjecture?
Can we construct algebraic pseudorandom functions?

[Aaronson-Drucker]’s candidate:

det


ℓi, j(x)

where ℓi, j’s are random linear functions.
Conjecture: this is pseudorandom (maybe only against alg ckts?)
Challange: establish this under some crypto hardness
assumption.

Evidence?
Conjecture: VP hits VP.
How to obtain evidence to support this conjecture?
Can we construct algebraic pseudorandom functions?
[Aaronson-Drucker]’s candidate:

det


ℓi, j(x)

where ℓi, j’s are random linear functions.

Conjecture: this is pseudorandom (maybe only against alg ckts?)
Challange: establish this under some crypto hardness
assumption.

Evidence?
Conjecture: VP hits VP.
How to obtain evidence to support this conjecture?
Can we construct algebraic pseudorandom functions?
[Aaronson-Drucker]’s candidate:

det


ℓi, j(x)

where ℓi, j’s are random linear functions.
Conjecture: this is pseudorandom (maybe only against alg ckts?)

Challange: establish this under some crypto hardness
assumption.

Evidence?
Conjecture: VP hits VP.
How to obtain evidence to support this conjecture?
Can we construct algebraic pseudorandom functions?
[Aaronson-Drucker]’s candidate:

det


ℓi, j(x)

where ℓi, j’s are random linear functions.
Conjecture: this is pseudorandom (maybe only against alg ckts?)
Challange: establish this under some crypto hardness
assumption.

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.

Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,

• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,

• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,

• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,

• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,

• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas

• circuits composed with sparse polynomials of
transcendence degree O(1).

Provable Evidence?
This work: nearly all the hitting sets we know for restricted
models can be made succinct.
Thm: coefficient vectors of poly(log s, n) size multilinear formulas
are hitting sets for N = 2n variate size s:

• ΣkΠΣ formulas,
• ΣΠΣ formulas of constant transcendence degree,
• sparse polynomials,
• Σm∧ΣΠO(1) formulas,
• commutative roABPs,
• depth-O(1) Occur-O(1) formulas
• circuits composed with sparse polynomials of

transcendence degree O(1).

Yet More:
Not as succinct but still worth mentioning:

width w2 length-n roABPs are hitting set for width-w length-N
roABPs (in certain variable orders).
(open: make the w2 closer to poly log(w) and remove the
restriction on ordering)
We can’t make all known hitting sets succinct but we have some
excuses (more on that later).

Yet More:
Not as succinct but still worth mentioning:
width w2 length-n roABPs are hitting set for width-w length-N
roABPs (in certain variable orders).

(open: make the w2 closer to poly log(w) and remove the
restriction on ordering)
We can’t make all known hitting sets succinct but we have some
excuses (more on that later).

Yet More:
Not as succinct but still worth mentioning:
width w2 length-n roABPs are hitting set for width-w length-N
roABPs (in certain variable orders).
(open: make the w2 closer to poly log(w) and remove the
restriction on ordering)

We can’t make all known hitting sets succinct but we have some
excuses (more on that later).

Yet More:
Not as succinct but still worth mentioning:
width w2 length-n roABPs are hitting set for width-w length-N
roABPs (in certain variable orders).
(open: make the w2 closer to poly log(w) and remove the
restriction on ordering)
We can’t make all known hitting sets succinct but we have some
excuses (more on that later).

How to construct a succinct hitting set
Toy example: C ⊆ F[X1, . . . , XN] is the class of polynomials with
monomials of support ≤ poly log(N).

Hitting set for C : {v : supp(v)≤ poly log(N) = poly(n)}.
(“guess” vars in small support monomials, brute-force over them)
Q: Is this succinct?
A: Yes. Each v is a coefficient vector of a poly(n) ΣΠ circuit in
x1, . . . , xn (only poly(n) monomials with non-zero coefficient).

How to construct a succinct hitting set
Toy example: C ⊆ F[X1, . . . , XN] is the class of polynomials with
monomials of support ≤ poly log(N).
Hitting set for C : {v : supp(v)≤ poly log(N) = poly(n)}.

(“guess” vars in small support monomials, brute-force over them)
Q: Is this succinct?
A: Yes. Each v is a coefficient vector of a poly(n) ΣΠ circuit in
x1, . . . , xn (only poly(n) monomials with non-zero coefficient).

How to construct a succinct hitting set
Toy example: C ⊆ F[X1, . . . , XN] is the class of polynomials with
monomials of support ≤ poly log(N).
Hitting set for C : {v : supp(v)≤ poly log(N) = poly(n)}.
(“guess” vars in small support monomials, brute-force over them)

Q: Is this succinct?
A: Yes. Each v is a coefficient vector of a poly(n) ΣΠ circuit in
x1, . . . , xn (only poly(n) monomials with non-zero coefficient).

How to construct a succinct hitting set
Toy example: C ⊆ F[X1, . . . , XN] is the class of polynomials with
monomials of support ≤ poly log(N).
Hitting set for C : {v : supp(v)≤ poly log(N) = poly(n)}.
(“guess” vars in small support monomials, brute-force over them)
Q: Is this succinct?

A: Yes. Each v is a coefficient vector of a poly(n) ΣΠ circuit in
x1, . . . , xn (only poly(n) monomials with non-zero coefficient).

How to construct a succinct hitting set
Toy example: C ⊆ F[X1, . . . , XN] is the class of polynomials with
monomials of support ≤ poly log(N).
Hitting set for C : {v : supp(v)≤ poly log(N) = poly(n)}.
(“guess” vars in small support monomials, brute-force over them)
Q: Is this succinct?
A: Yes. Each v is a coefficient vector of a poly(n) ΣΠ circuit in
x1, . . . , xn (only poly(n) monomials with non-zero coefficient).

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.

F ∈ C doesn’t necessarily contain small support monomials.
Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .
Q: Is this succinct?
A: Yes. 1 is coeff vector of

∏n
i=1(x i + 1). Now take the sum of

this and the circuit from previous slide.
Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.
F ∈ C doesn’t necessarily contain small support monomials.

Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .
Q: Is this succinct?
A: Yes. 1 is coeff vector of

∏n
i=1(x i + 1). Now take the sum of

this and the circuit from previous slide.
Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.
F ∈ C doesn’t necessarily contain small support monomials.
Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .
Q: Is this succinct?
A: Yes. 1 is coeff vector of

∏n
i=1(x i + 1). Now take the sum of

this and the circuit from previous slide.
Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.
F ∈ C doesn’t necessarily contain small support monomials.
Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .

Q: Is this succinct?
A: Yes. 1 is coeff vector of

∏n
i=1(x i + 1). Now take the sum of

this and the circuit from previous slide.
Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.
F ∈ C doesn’t necessarily contain small support monomials.
Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .
Q: Is this succinct?

A: Yes. 1 is coeff vector of
∏n

i=1(x i + 1). Now take the sum of
this and the circuit from previous slide.
Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.
F ∈ C doesn’t necessarily contain small support monomials.
Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .
Q: Is this succinct?
A: Yes. 1 is coeff vector of

∏n
i=1(x i + 1). Now take the sum of

this and the circuit from previous slide.

Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

Sparse Polynomials
Less-of-a-toy example: C ⊆ F[X1, . . . , XN] is the class of
polynomials of sparsity at most s.
F ∈ C doesn’t necessarily contain small support monomials.
Exercise: if F(X) has sparsity ≤ s, F(X+ 1) has non-zero
monomial of support ≤ log s.
[Forbes15, Gurjar-Korwar-Saxena-Theirauf16]

Cor: {v+ 1 : supp(v)≤ poly log(s)} hitting set for C .
Q: Is this succinct?
A: Yes. 1 is coeff vector of

∏n
i=1(x i + 1). Now take the sum of

this and the circuit from previous slide.
Cor: poly(log s, n)-ΣΠΣ succinct hitting set for sparse
polynomials.

More succinct hitting sets
In the paper: many other succinct generators, most of them
follow from various combinations of basic constructs such as
Shpilka-Volkovich generator and Gabizon-Raz’s rank
condenser, which we make succinct.

Builds on a lot of previous work: [Dvir-Shpilka, Karnin-Shpilka,
Kayal-Saraf, Saxena-Seshadhri, Shpilka-Volkovich,
Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Beecken-
Mittmann-Saxena, Agrawal-Saha-Saxena-Saptharishi,...].
Cor: Super-polynomial lower bounds on defining equations of
VP in many models.

More succinct hitting sets
In the paper: many other succinct generators, most of them
follow from various combinations of basic constructs such as
Shpilka-Volkovich generator and Gabizon-Raz’s rank
condenser, which we make succinct.
Builds on a lot of previous work: [Dvir-Shpilka, Karnin-Shpilka,
Kayal-Saraf, Saxena-Seshadhri, Shpilka-Volkovich,
Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Beecken-
Mittmann-Saxena, Agrawal-Saha-Saxena-Saptharishi,...].

Cor: Super-polynomial lower bounds on defining equations of
VP in many models.

More succinct hitting sets
In the paper: many other succinct generators, most of them
follow from various combinations of basic constructs such as
Shpilka-Volkovich generator and Gabizon-Raz’s rank
condenser, which we make succinct.
Builds on a lot of previous work: [Dvir-Shpilka, Karnin-Shpilka,
Kayal-Saraf, Saxena-Seshadhri, Shpilka-Volkovich,
Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Beecken-
Mittmann-Saxena, Agrawal-Saha-Saxena-Saptharishi,...].
Cor: Super-polynomial lower bounds on defining equations of
VP in many models.

What we can’t do
conspicuously missing: Klivans-Spielman (Kronecker) generator.

X i 7→ yki mod p

y new var, k integer and p prime chosen from sufficiently large
set.
Hits sparse polynomials and very useful in other constructions.
Challenge: make it succinct, i.e., find a small circuit in
{x1, . . . , xn, y} such that the coefficient of xS is ykbin(S) mod p ,
bin(S) = integer whose binary expansion is the characteristic
vector of S.

What we can’t do
conspicuously missing: Klivans-Spielman (Kronecker) generator.

X i 7→ yki mod p

y new var, k integer and p prime chosen from sufficiently large
set.

Hits sparse polynomials and very useful in other constructions.
Challenge: make it succinct, i.e., find a small circuit in
{x1, . . . , xn, y} such that the coefficient of xS is ykbin(S) mod p ,
bin(S) = integer whose binary expansion is the characteristic
vector of S.

What we can’t do
conspicuously missing: Klivans-Spielman (Kronecker) generator.

X i 7→ yki mod p

y new var, k integer and p prime chosen from sufficiently large
set.
Hits sparse polynomials and very useful in other constructions.

Challenge: make it succinct, i.e., find a small circuit in
{x1, . . . , xn, y} such that the coefficient of xS is ykbin(S) mod p ,
bin(S) = integer whose binary expansion is the characteristic
vector of S.

What we can’t do
conspicuously missing: Klivans-Spielman (Kronecker) generator.

X i 7→ yki mod p

y new var, k integer and p prime chosen from sufficiently large
set.
Hits sparse polynomials and very useful in other constructions.
Challenge: make it succinct, i.e., find a small circuit in
{x1, . . . , xn, y} such that the coefficient of xS is ykbin(S) mod p ,
bin(S) = integer whose binary expansion is the characteristic
vector of S.

Usefulness of KS
The generator X i 7→ yki mod p1

1 · · · yki mod pm
m for m= O(log n) hits

roABPs (in any order) and read-once determinants
(polys of the form det(M) where each entry in M contains a var or a
constant and each var appears at most once)

[Agrawal-Gurjar-Korwar-Saxena, Fenner-Gurjar-Thierauf,
Gurjar-Thierauf]

[Raz] and [Raz-Yehudayoff] showed: small multilinear formulas
are not a hitting set for read-once determinants.
Our constructions are all small multilinear formulas, so we might
need new ideas.

Usefulness of KS
The generator X i 7→ yki mod p1

1 · · · yki mod pm
m for m= O(log n) hits

roABPs (in any order) and read-once determinants
(polys of the form det(M) where each entry in M contains a var or a
constant and each var appears at most once)

[Agrawal-Gurjar-Korwar-Saxena, Fenner-Gurjar-Thierauf,
Gurjar-Thierauf]
[Raz] and [Raz-Yehudayoff] showed: small multilinear formulas
are not a hitting set for read-once determinants.

Our constructions are all small multilinear formulas, so we might
need new ideas.

Usefulness of KS
The generator X i 7→ yki mod p1

1 · · · yki mod pm
m for m= O(log n) hits

roABPs (in any order) and read-once determinants
(polys of the form det(M) where each entry in M contains a var or a
constant and each var appears at most once)

[Agrawal-Gurjar-Korwar-Saxena, Fenner-Gurjar-Thierauf,
Gurjar-Thierauf]
[Raz] and [Raz-Yehudayoff] showed: small multilinear formulas
are not a hitting set for read-once determinants.
Our constructions are all small multilinear formulas, so we might
need new ideas.

More Open Problems
More models for which we know of hitting sets but not succinct
ones:

• roABPs in any order
• read-k oblivious ABPs
• bounded-depth multilinear formulas

Also: pseudorandom polynomials?
Is [Aaronson-Drucker]’s construction pseudorandom?

Thank You

More Open Problems
More models for which we know of hitting sets but not succinct
ones:

• roABPs in any order
• read-k oblivious ABPs
• bounded-depth multilinear formulas

Also: pseudorandom polynomials?
Is [Aaronson-Drucker]’s construction pseudorandom?

Thank You

More Open Problems
More models for which we know of hitting sets but not succinct
ones:

• roABPs in any order
• read-k oblivious ABPs
• bounded-depth multilinear formulas

Also: pseudorandom polynomials?
Is [Aaronson-Drucker]’s construction pseudorandom?

Thank You

More Open Problems
More models for which we know of hitting sets but not succinct
ones:

• roABPs in any order
• read-k oblivious ABPs
• bounded-depth multilinear formulas

Also: pseudorandom polynomials?
Is [Aaronson-Drucker]’s construction pseudorandom?

Thank You

