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We look at the linear programming method for the maximum matching and perfect matching
problems. Given a graph G = (V,E), an integer linear program (ILP) for the maximum
matching problem can be written by defining a variable xe for each edge e ∈ E and a
constraint for each vertex u ∈ V as follows:

Maximize
∑

e∈E

xe subject to

∀u ∈ V
∑

e⊥u

xe ≤ 1

∀e ∈ E xe ∈ {0, 1}

Here e ⊥ u denotes that e is incident on u. It can be seen that the optimum solution to this
ILP is indeed a maximum matching in G. Therefore an algorithm to solve ILP can be used to
get a maximum matching in G. However, ILP is known to be NP-complete and hence there
is no polynomial-time algorithm known for it.

LP relaxation One way to deal with this is to relax the integrality constraints and allow
xe ∈ [0, 1] to get a linear program, which can be solved in polynomial-time. However, this
gives rise to fractional matchings. Characteristic vectors of matchings in G can be seen as
points in Rm where m = |E|. The convex hull of all the matchings forms a polytope called
the matching polytope M. However, the LP relaxation may give matchings that are outside
M. Figure shows some examples. It can be seen that in examples (1) and (2) in Figure , the
matching polytope contains all the fractional matchings which form the feasible region of
the relaxed LP. However, in Example (3), the maximum value of the relaxed LP is attained
at the point (1

2
, 1

2
, 1

2
), which lies outside M. We will see next that the matching polytope

contains all the fractional matchings if and only if the graph is bipartite. We first recall a
useful property of convex polytopes: Let P ⊆ Rm be a convex polytope. The following are
equivalent:

1. A point x is a vertex of P.

2. x cannot be written as a non-trivial convex combination of more than one point in P.

3. There is a hyperplane H such that {x} = H ∩ P.

4. If P is given as an intersection of half-spaces, then x is a unique solution to a set of m
linearly independent constraints met as equalities.
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Figure 1: Some examples of LP relaxation

Definition 1 (Matching polytope) For a given graph G, the matching polytope M is the

convex hull of all the matchings in G. Thus

M =

{

∑

i

λiMi | ∀i λi ≥ 0,Mi is a matching, and
∑

i

λi = 1

}

Definition 2 (Fractional matching polytope) The fractional matching polytope FM is

defined as the feasible region for the LP

∀u ∈ V :
∑

e⊥u

xe ≤ 1, ∀e ∈ E : xe ∈ [0, 1]

For a graph G, M and FM may not be the same. But they are the same for bipartite graphs.

Claim 3 For bipartite graphs, the LP relaxation gives a matching as an optimal solution.

Proof: The proof follows from the fact that the optimum of an LP is attained at a vertex of
the polytope, and that the vertices of FM are the same as those of M for a bipartite graph,
as proved in Claim 6 below.

We define the perfect matchings polytope PM and the fractional perfect matchings polytope

FPM.
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Definition 4 (Perfect Matching Polytope) For a given graph G, the perfect matching
polytope PM is the convex hull of all the perfect matchings in G. Thus

FM =

{

∑

i

λiMi | ∀i λi ≥ 0,Mi is a perfect matching, and
∑

i

λi = 1

}

.

Definition 5 (Fractional Perfect Matching Polytope) The fractional perfect match-
ing polytope FPM is defined as the feasible region for the LP

∀u ∈ V :
∑

e⊥u

xe = 1, ∀e ∈ E : xe ∈ [0, 1]

For M and PM, we know the extremal points of the polytopes, but we do not yet have a set
of halfspaces whose intersection defines the polytope. For FM and FPM, on the other hand,
we know the defining half-spaces but do not yet know the extremal points. For bipartite
graphs, fortunately, the two coincide.

Claim 6 1. M ⊆ FM, PM ⊆ FPM.

2. If G is bipartite, then M = FM and PM = FPM.

3. If G is non-bipartite, then M 6= FM.

Proof:
Proof of 1: It can be seen that any matching in G satisfies the constraints for FM. Thus

the extreme points of M are all contained in FM and hence M ⊆ FM. Similarly, PM ⊆ FPM.
Proof of 2: Note that all the vertices of M are in {0, 1}m, where m = |E|. Further, any

vertex in FM ∩ {0, 1}m is also in M. Thus, it suffices to prove that all the vertices of FM

are integral. Assume that there is a non-integral vertex x of FM. We will show that x can
be written as a non-trivial convex combination of two points in FM, which contradicts the
assumption that it is a vertex.

Define Gx = (V,Ex) where Ex = {e | xe /∈ {0, 1}}. Suppose Gx has a cycle C. Since G
is bipartite, C is of even length. Let a and b be the minimum and maximum values of xe

for e ∈ C respectively. We refer to xe as the weight on e. Define ǫ = min{1 − b, a}. Define
two matchings x+ and x− obtained from x by adding and subtracting ǫ from the weights on
alternate edges of C; see Figure 2 for an example. Then x = 1

2
(x+ + x−).

If Gx has no cycle, pick any maximal path in Gx. The end-points of the path have weights
strictly less than 1 on the edges incident on them. Define a, b, ǫ and construct x+ and x− as
before, which again contradicts the extremality of x.

The same argument works for PM = FPM, except that the case Gx being acyclic does
not arise.

Proof of 3: Let G be non-bipartite. Take an odd cycle C in G. Consider a fractional
matching x that has weights 1

2
on each of the edges in C. Clearly, this matching is in FM. It

can be seen that it cannot be written as a convex combination of any two or more matchings,
and so it is not in M.
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Figure 2: Expressing a cycle in x as a convex combination of x+ and x−

Despite the third point in Claim 6, we can say something about FM even for non-bipartite
graphs.

Claim 7 All the vertices of FM are half-integral; that is, in {0, 1
2
, 1}m.

We will prove the following stronger version, which implies the above claim:

Theorem 8 For any graph G, x ∈ FPM if and only if x satisfies the following conditions:

1. ∀e ∈ E, xe ∈ {0, 1, 1
2
}.

2. Let G0 = (V,E0) where E0 = {e ∈ E | xe = 1
2
}. Then G0 is a collection of vertex-

disjoint odd cycles.

Proof of Theorem 8: First we prove that if x satisfies the two conditions, then x is a
vertex. Thus assume that x ∈ {0, 1, 1

2
}m. Define

E0 =

{

e ∈ E | xe =
1

2

}

E1 = {e ∈ E | xe = 1}

E2 = {e ∈ E | xe = 0}

To show that x is a vertex, we will show that there is a hyperplane H such that {x} =
H∩FPM. For any w ∈ Rm and any a ∈ R, let Hw,a denote the hyperplane {y |

∑

e weye = a}.
To construct H, we set we = −1 if xe = 0 and we = 0 if xe > 0. To ensure that x lies on H,
we need a = 0, since wT x = 0. Now we need to show that no other point in FPM lies on H.
Suppose y ∈ H ∩ FPM. Then y ∈ R≥0, and w|E2

= −1, so yT w = yT |E2
w|E2

, so it must be
that y|E2

= 0. Thus ye = 0 whenever xe = 0. Since we have only odd cycles in the graph
restricted to E0, we can see from the constraints of FPM y|E0

= 1
2
, and so also y|E1

= 1.
Thus y cannot be different from x. Hence {x} = H ∩ FPM and so x is a vertex.

Now we prove the other direction. Let x be a vertex of FPM. We will prove that x
satisfies the two conditions. Let H = {z | wT z = a} be the witnessing hyperplane such that
{x} = H∩FPM. Without loss of generality, assume that FPM lies on the side of H satisfying
wT z ≤ a.
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Interpret the adjacency matrix of G as the bipartite adjacency matrix of a graph G′.
Equivalently, define a bipartite graph G′ = (V ′, V ′′, E ′) such that V ′ = V ′′ = V . Thus each
u ∈ V has a copy u′ ∈ V ′ and u′′ ∈ V ′′. Further, for each edge, make two copies as follows:
E ′ = {(u′, v′′), (v′, u′′) | (u, v) ∈ E}. Thus |E ′| = 2m. Each perfect matching M in G also
has a corresponding perfect matching M ′ in G′ such that (u, v) ∈ M ⇒ (u′, v′′), (v′, u′′) ∈
M ′. This holds for fractional perfect matchings as well; if x ∈ FPM and y is defined as
xe = ye1

= ye2
where for each edge e, e1 and e2 are the copies of E in G′, then y ∈ FPM(G′).

As G′ is bipartite, by Claim 6, we also have y ∈ PM(G′).
Now define the hyperplane H ′ = {z | w′T z = 2a} where w′ is obtained by concatenating

the vector w with itself. Clearly, since x ∈ H, we have y ∈ H ′. Thus the following LP on
2m variables has a non-empty feasible region, and the optimum is at least 2a.

maximise w′T Y subject to Y ∈ PM(G′).

In particular, the optimum is achieved at a vertex, say z. Since z is a vertex of PM(G′) for
bipartite G′, z is in {0, 1}2m. Define a new vector x′ ∈ Rm such that ∀e ∈ E, x′

e =
ze1

+ze2

2
.

Clearly, wT x′ = 1
2
(w′T z) ≥ a. But it is easy to see that x′ ∈ FPM(G), so wT x′ ≤ a.

Therefore wT x′ = a; and so x′ ∈ H ∩ FPM = {x}, implying x′ = x. Therefore for each edge
e,

ze1
+ze2

2
= x′

e = xe. This implies that x is half-integral, which proves the first condition of
the theorem.

For the second condition, let x have an even cycle with weights 1
2

on all its edges. Then
x can be written as a convex combination of two matchings which contain alternate edges
from the cycle. Thus the presence of an even cycle in G0 implies that x is not a vertex.
Therefore G0 contains only disjoint odd cycles.

As we have seen, for non-bipartite graphs, FPM * PM. This happens precisely because
an odd subset of vertices can have a fractional perfect matching but not an integral one.
Hence, to get a set of defining half-spaces for PM, we need to introduce more constraints in
the FPM polytope, which essentially require that at least one vertex of each odd subset be
matched outside the subset. Alternatively, for each odd subset S, the total weight of edges
within S should be at most |S|−1

2
. With this additional constraint, we define a new perfect

matching polytope P(G) as the set of points x ∈ Rm satisfying

∀e ∈ E : xe ≥ 0; ∀u ∈ V :
∑

e⊥u

xe = 1; ∀S ⊆ V : |S| odd ⇒
∑

e∈E(S,S̄)

xe ≥ 1

Similarly define a new fractional matching polytope MP(G) as the set of points x ∈ Rm

satisfying

∀e ∈ E : xe ≥ 0; ∀u ∈ V :
∑

e⊥u

xe ≤ 1; ∀S ⊆ V : |S| odd ⇒
∑

e∈E(S)

xe ≤
|S| − 1

2

Now we show that these polytopes, defined by their bounding halfspaces, correspond to the
polytopes defined by having (perfect) matchings as extremal points. It is straightforward to
see that M(G) ⊆ MP(G) and PM(G) ⊆ P(G), since every vertex of M(G) is easily seen to be
in MP(G), and every vertex of PM(G) is in P(G). We show the converse below.
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Theorem 9 (Edmonds Theorem) PM(G) = P(G).

Before proving this theorem, we prove that it implies the following:

Theorem 10 MP(G) = M(G).

Proof: We need to show that MP(G) ⊆ M(G). Construct a new graph H = (V ′, E ′) as
follows: Take two disjoint copies of G, say G1, G2 and for each u ∈ V , add edge (u1, u2)
where u1 and u2 are the copies of u in G1 and G2 respectively. For x ∈ MP(G), we construct
y ∈ P(H) such that both the copies of the edge e ∈ E have weight xe in y. Moreover, for
each vertex u ∈ V , we set the weight of the edge (u1, u2) in y to be the deficit of u in x. (By
deficit we mean the difference between 1 and the total weights of edges incident on u.)

We show that y satisfies the constraints of P(H). It is easy to see that y satisfies the first
two constraints of P(H). To see that y satisfies the third constraint as well, consider an odd
cardinality subset S of vertices in H. Let S = X1 ∪ Y2 where X1 ⊆ V (G1) and Y2 ⊆ V (G2).
For subset T of vertices, let δ(T ) denote

∑

e∈E′(T,T̄ ) ye. Then

δ(S) ≥ δ(X1 \ Y1) + δ(Y2 \ X2)

where Y1 and X2 are copies of Y2 in G1 and of X1 in G2 respectively. Hence, without loss
of generality, we can assume that the underlying sets X and Y in G are disjoint. Further,
without loss of generality we can also assume that Y 6= ∅ and that |X| is odd. Since |X| is

odd, there is a deficit of at least |S|− |S|−1
2

, which is added to the edges going out of X. Thus
y satisfies the third constraint too and hence y ∈ P(H). But P(H) = PM(H) by Theorem 9.
Therefore we can write y as a convex combination of perfect matchings in H. From this,
a convex combination of matchings in G yielding x can be computed by loking at just one
copy of G in H. So x ∈ M(G).

Now we can restrict ourselves to perfect matchings and prove Edmonds’ theorem:
Proof of Theorem 9: For odd n, PM(G) = ∅. So is P(G), because for S = V , the third
constraint cannot be satisfied. So there is nothing to prove.

For even n, we prove the theorem by contradiction. Let G be a graph such that ∃x ∈
P(G)\ PM(G). Take the smallest such G i.e. a graph with minimum number of vertices
and breaking ties by picking a graph with minimum number of edges, which satisfies this
condition. Consider x as defined above for G. By minimality of G, we have the following:

1. n is even.

2. ∀e ∈ E, 0 < xe < 1.
If there is an edge e with xe = 0, we can discard it, contradicting the minimality of G.
If there is an edge e = (u, v) with xe = 1, we can discard u and v, again contradicting
minimality of G.

3. There are no isolated or pendant vertices in G.
At pendant vertices, the single incident edge would have weight 1, contradicting the
above. Isolated vertices contradict minimality of G.
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4. ∃v ∈ V with degree greater than 2. Hence m > n.
If all vertices have degree 2, then G is a collection of vertex-disjoint cycles. The cycles
cannot be odd as G satisfies the constraints of P(G). So G is bipartite and hence by
Claim 6 cannot be a counter example.

Without loss of generality, assume x to be a vertex of P(G). Therefore it is the unique solution
of m linearly independent constraints satisfied as equalities. By 2 above, the constraints can
not be of the form xe ≥ 0. There are only n constraints of the form

∑

e⊥u xe = 1. Therefore
at least one of these m constraints should be of the form

∑

e∈E(S,S̄) xe ≥ 1. Let S be a subset

where such a constraint is satisfied by x with equality. Further, |S|, |S̄| > 1, otherwise the
constraint will be of the form

∑

e⊥u xe = 1. Since S is odd, 3 ≤ |S|, |S̄| ≤ n − 3.
Construct G1 and G2 as follows: In G1, S̄ is contracted to a single vertex s̄, S remains the

same as in G, and multiple edges obtained are replaced by single edges. Similarly, define G2

by contracting S to s and leaving S̄ as in G. Let x(1) be the restriction of x to G1 such that
the edges incident on s̄ get a weight equal to the sum of the weights of the corresponding
edges in x. Similarly construct x(2) as restriction of x to G2. Clearly x(1) ∈ P(G1). But G1 is
smaller than G and hence P(G1) = PM(G1). Similarly, P(G2) = PM(G2). Therefore x(1) and
x(2) can be written as convex combinations of perfect matchings in G1 and G2 respectively:

x(1) =
∑

i

αiχLi
x(2) =

∑

j

βjχNj

where χM is the characteristic vector of a matching M , Li is a perfect matching in G1 and Nj

in G2, the coefficients αi, βj are non-negative, and
∑

i αi =
∑

j βj = 1. The idea is to express
x as a convex combination of matchings in G by patching together the Li and Nj. Consider
perfect matchings L in G1 and N in G2 from above convex combinations. Let uL (respectively
vN) be the vertex in G1 (G2) which is matched to s̄ (s) in L (N). If (uL, vN) ∈ E, then
L \ {(uL, s̄)} ∪N \ {(s, vN)} ∪ {(uL, vN)} is a perfect matching in G. Construct such perfect
matchings Mij for all the pairs (Li, Nj) wherever (uLi

, vNj
) ∈ E. (Otherwise set Mij = ∅.)

We claim that x can be written as a convex combination of matchings of the form Mij.
Let ui denote the vertex matched to s̄ in Li, that is uLi

. Similarly, let vj denote the
vertex vNj

that is, matched by Nj to s. For vertex u ∈ S, define g(u) as g(u) =
∑

v∈S̄ xuv.

Then g(u) = x
(1)
us̄ =

∑

i:ui=u αi. Similarly, for vertex v ∈ S̄, define g(v) as g(v) =
∑

u∈S xuv;

then g(v) = x
(2)
sv =

∑

j:vj=v βj. Now set the γ weights as follows:

γij =

(

αi

g(ui)

) (

βj

g(vj)

)

xuivj

Claim 11 x =
∑

i,j γijχMij
. That is, for each f ∈ E,

xf =
∑

ij: Mij contains f

γij.

The claim, whose proof is left as an exercise, contradicts the assumption that x is a vertex
of P(G).
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