
Matchings in Graphs

Lecturer: Jose Mathew
Scribe: Meena Mahajan

Meeting: 8
4 March

In general, we do not know of any NC algorithm for deciding whether a graph has a
perfect matching or not, although there are randomized NC algorithms. However, in special
cases, determinsitic NC algorithms are possible. We consider one such case today. Assume
that the input graphs come with a promise: there is a fixed polynomial, say nk, such that
if the input graph has n vertices, then it has at most nk perfect matchings. In this case, we
describe deterministic NC algorithms to

1. Decide whether the graph has a perfect matching,

2. Compute the number of perfect matchings, and

3. Construct all the distinct perfect matchings.

This result is due to [GK87]; we follow the presentation from [KR98].

1 Decision in NC

The main idea is to use carefully selected instantiations of the Tutte matrix A of the input
graph G. There is a variable xij for each edge (i, j), and we have seen that det(A) 6≡ 0 ⇔
G has a perfect matching. So checking if G has a perfect matching boils down to checking

whether or not det(A) is identically zero. There are NC algorithms known that given a
matrix over integers, or even rationals, compute the determinant of the matrix as output.
However, A is a matrix with variables as entries, and det(A) is a multivariate polynomial, so
these algorithms are not applicable. However, we know something about this polynomial:

1.

det(A) =

(∑
M is a perfect matching

aM ·monomial(M)

)2

where for any set of edges E ′ ⊂ E, monomial(E) =
∏

i<j,(i,j)∈E′ xij, and the coefficients

aM are from the set {+1,−1}.

2. The degree of the polynomial det(A) is n if G has a perfect matching, 0 otherwise.

3. The number of terms is at most n2k.

To test this polynomial, we use the Non-Zero-Sum Lemma and the Sparse Test Theorem,
stated and proved below.

8-1

Lemma 1 (Non-Zero-Sum Lemma) Let α1, . . . , αt be any pairwise distinct numbers. Let
(a1, . . . , at) be a non-zero vector. Then the following sums are not all zero.

sum0 = a1α
0
1 + . . .+ atα

0
t

sum1 = a1α
1
1 + . . .+ atα

1
t

...
...

...

sumi = a1α
i
1 + . . .+ atα

i
t

...
...

...

sumt−1 = a1α
t−1
1 + . . .+ atα

t−1
t

That is, there exists an s, 0 ≤ s < t, such that sums =
∑t

i=1 aiα
s
i 6= 0.

Proof: Note that 
α0

1 α0
2 . . . α0

t

α1
1 α1

2 . . . α1
t

α2
1 α2

2 . . . α2
t

...
...

...
αt−1

1 αt−1
2 . . . αt−1

t

 ·

a1

a2

a3
...
at

 =


sum0

sum1

sum2
...

sumt−1


The matrix on the left is a Vandermonde matrix, and since all the αi are distinct, it is
non-singular. The vector on the left is non-zero. A non-singular transformation cannot take
a non-zero vector to the zero vector, so the vector on the right is also non-zero.

Theorem 2 (Sparse-Test theorem) Let P be a multivariate polynomial in N variables
y1, . . . , yN . Let S be a known upper bound on T , the number of distinct monomials in P .
There is an algorithm to test if P is nonero, requiring S evaluations of P at S different input
values in parallel, and checking if any of these evaluations is non-zero.

Proof: The given polynomial P is of the form

P (y1, . . . , yN) =
T∑

i=1

aimoni(y1, . . . , yN)

where moni is the monomial corresponding to the ith term.
Choosing distinct primes as the values for the variables, yj = pj, each term gets a

different value. So if αi = moni(p1, . . . , pN), then all the αis are distinct. Further, for each s,
P (ps

1, . . . , p
s
N) =

∑T
i=1 aiα

s
i . Now, using Lemma 1, we conclude that if P is not indentically

zero, then for some 0 ≤ s < T ≤ S, P (ps
1, . . . , p

s
N) 6= 0. On the other hand, if P is identically

0, then P (ps
1, . . . , p

s
N) = 0 for all s.

8-2

Returning to the perfect matching problem, the sparse polynomial we want to test for
non-zero is precisely det(A). Since G has at most nk perfect matchings, det(A) has at most
n2k non-zero terms. Assign a distinct prime pij to each edge variable xij. This ensures that
all the monomials of det(A) (corresponding to pairs of perfect matchings) get distinct values.
By Theorem 2, it suffices to check if the determinant of A evalautes to a non-zero value for
at least one of the n2k settings, where in the rth setting, xij is instantiated with pr

ij. Since
the determinant of integer matrices can be evaluated in NC, and since we need at most n2

primes and the first n2 primes are asymptotically less than or equal to n3, this yields an NC
algorithm.

2 Construction in NC

Though the above algorithm tells us whether or not G has a perfect matching, it tells us
nothing about what that matching might be. It also does not tell us the count; note that
the smallest number s for which the s powers give a non-zero determinant is at most, but
not necessarily equal to, the number of perfect matchings. We need a different algorithm
to construct even one such perfect matching. We now describe an NC algorithm which
constructs all the perfect matchings in the graph, and hence also computes the count. The
algorithm proceeds as follows:

Let G = (V,E) be the given graph, where |V | = n, |E| = m, and we are given the
promise that G has at most nk perfect matchings. Assume without loss of generality that
the number of edges, m, is a power of 2 and that n is even. Recursively partition the edge
set into equal halves, building a complete binary tree with m leaves and depth logm. Each
node in the tree is labeled with a subset W of E; its left child has subset WL and its right
child has subset WR, where WL and WR partition W into equal halves. The root is labeled
E, and the leaves are labeled with singletons (a single edge). The tree has O(m) nodes.

The idea is to compute, for each set W in this tree, a family All-Relevant(W) of sets
defined as follows:

All-Relevant(W) = {W ∩M | M is a perfect matching }

Since G has at most nk perfect matchings, the family All-Relevant(W) has at most nk sets,
no matter what W is. So we need not worry about the family becoming too large. And the
family All-Relevant(E) is precisely the set of all perfect matchings.

The computation proceeds bottom-up. At a leaf labeled by the set W = {e} where
e = (u, v), there are two situations to consider.

• If some perfect matching uses e, then the set {e} is in All-Relevant(W). This can
be tested by using the algorithm of the previous section on the graph obtained by
deleting vertices u, v. (The resulting graph, on n′ = n − 2 vertices, still has at most
nk = (n′ + 2)k perfect matchings.)

• If some perfect matching does not use e, then the empty set ∅ is in All-Relevant(W).
This can be tested by using the algorithm of the previous section on the graph obtained

8-3

by deleting the edge (u, v). (Again, the resulting graph still has at most nk perfect
matchings.)

Now suppose we are at a node labeledW , and we know All-Relevant(W1) and All-Relevant(W2).
We construct the family

F = {Y1 ∪ Y2 | Yi ∈ All-Relevant(Wi) for i = 1, 2}

Let Y be some subset in All-Relevant(W). That is, for some perfect matching M , W∩M = Y .
Since W1,W2 partition W , it follows that Y = (W1 ∩M) ∪ (W2 ∩M), and so Y gets into F
in this construction.

The problem is that some spurious sets Y can also get in; not all pairwise unions are
relevant for W . So we need to prune F . But this is easy: to test whether any given Y (not
necessarily one in F) is in All-Relevant(W), we need to check if

• Y ⊆ W ,

• Y is a matching, and

• there is some perfect matching which uses all the edges in Y and no other edges of W .

The first and second checks are trivial. For the third, let G′ be the graph obtained by
deleting all endpoints of edges in Y and all edges in W \ Y . Then G′ also has at most nk

perfect matchings, since each perfect matching in G′ can be extended by Y to a perfect
matching in G. If G′ has n′ vertices, then n′ = n− 2|Y |, and so G′ has at most (n′ + 2|Y |)k

perfect matchings. Use the algorithm of the previous section on G′, computing and using an
appropriate value k′ such that (n′)k′ ≥ (n′ + 2|Y |)k.

References

[GK87] D Grigoriev and M Karpinski. The matching problem for bipartite graphs with
polynomially bounded permanents is in NC. In Proceedings of 28th IEEE Conference
on Foundations of Computer Science, pages 166–172. IEEE Computer Society Press,
1987.

[KR98] Marek Karpinski and Wojciech Rytter. Fast parallel algorithms for graph match-
ing problems. Oxford University Press, Oxford, 1998. Oxford Lecture Series in
Mathematics and its Applications 9.

8-4

