Matchings in Graphs

Lecturer: Prajakta Nimbhorkar Scribe: Karteek Meeting: 7 18/02/2010

In this lecture we look at an "efficient" randomized parallel algorithm for each of the following:

- Checking the existence of perfect matching in a bipartite graph.
- Checking the existence of perfect matching in a general graph.
- Constructing a perfect matching for a given graph.
- Finding a min-weight perfect matching in the given weighted graph.
- Finding a Maximum matching in the given graph.

where "efficient" means an NC-algorithm or an RNC-algorithm.

1 Definitions

Definition 1 NC: The set of problems that can be solved within poly-log time by a polynomial number of processors working in parallel.

Definition 2 RNC: The set of problems for which there is a poly-log time algorithm which uses polynomially many processors in parallel and in addition is allowed polynomially many random bits and the following properties hold:

- If the correct answer is YES, the algorithm returns YES with probability $\geq \frac{1}{2}$.
- If the correct answer is NO, the algorithm always returns NO.

2 Existence of a perfect matching

2.1 Bipartite Graphs

Here we consider the decision problem of checking if a bipartite graph has a perfect matching. Let the given graph be G = (V, E). Let $V = A \cup B$. Since we are looking for perfect matchings, we only look at graphs where |A| = |B| = n, because otherwise, there cannot be a perfect matching.

Fact 3 In a bipartite graph as above, every perfect matching can be seen as a permutation from S_n and every permutation from S_n can be seen as perfect matching.

Let the adjacency matrix of G be A. The Edmonds Matrix D of A is defined as follows: if $A_{i,j} = 1$ then $D_{i,j} = x_{i,j}$ else $D_{i,j} = 0$ where each $x_{i,j}$ is a variable. Note: dim(D)=dim(A)= $n \times n$

Let det(D) denote the determinant polynomial of D.

$$\begin{split} \det(D) = &\sum_{\sigma \in S_n} Sign(\sigma) \cdot Value(\sigma) \\ \text{where } Value(\sigma) = \prod_{i=1}^n D_{i,\sigma(i)} \end{split}$$

Claim 4 G has a perfect matching $\iff det(D)$ is not identically zero.

Proof:

 (\Rightarrow) : If det(D) is not identically zero, then there exists at least one permutation σ that has $\operatorname{value}(\sigma) \neq 0$.

 $M = \{(i, j) \in E | \sigma(i) = j\}$ will form a perfect matching of G (from fact).

(⇐): if G has a perfect matching M, then M corresponds to a permutation $\sigma \in S_n$. Value(σ) $\neq 0$ since $\forall i \ A_{i,\sigma(i)} \neq 0$

Fact 5 Problem of computing the determinant of a matrix is in NC

Lemma 6 (Schwartz Zippel): Let p be a polynomial of degree n on m variables. Let Ω be a set of integers, $|\Omega| = N$ then, $Pr_{\bar{a}\in_R\Omega}[p(\bar{a}) \neq 0] \geq 1 - \frac{n}{N}$ where $\bar{a} = a_1, a_2, ..., a_m$

Claim 7 Checking if the determinant polynomial p of degree n on m variables is not identically zero can be done in RNC

Proof: The algorithm is as follows:

Input: Polynomial p on m variables with degree n. Goal: If p is not identically 0, output 1 with probability $\geq \frac{1}{2}$. If p is indeed identically 0, output 0 with probability 1

Take Ω such that $|\Omega| \geq 2 \times n$

• Choose a random assignment ρ for the *m* variables from Ω .

- Run the NC algorithm for determinant on D with the assignment ρ .
- If the above step returns zero, then output 0
- Else output 1.

We can observe the following:

- The above algorithm satisfies the goals by virtue of the Schwartz-Zippel Lemma.
- The above algorithm uses polynomially many random bits.

Hence, we conclude that the above algorithm is indeed in RNC.

Theorem 8 The problem of checking if a given bipartite graph G = (V, E) has a perfect matching is in RNC

Proof: Follows from Claim 4 and Claim 7.

2.2 General Graphs

Here we consider the decision problem of checking if a graph has a perfect matching in the more general setting where the graph need not be bipartite. Let G = (V, E) be the given graph. Let $|V| = 2 \cdot n$. Assume that V is ordered.

Fact 9 Permutations from S_n without an odd cycle correspond to a perfect matching in G and vice-versa.

Let the adjacency matrix of G be A. The Tutte Matrix T of A is defined as follows:

> $t_{i,j} = x_{i,j}$ if $a_{i,j} = 1$ and i < j $t_{i,j} = -x_{j,i}$ if $a_{i,j} = 1$ and j < i $t_{i,j} = 0$ Otherwise.

where each $x_{i,j}$ is a variable.

Note: T is a skew symmetric matrix and $\dim(T) = \dim(A) = n \times n$.

Let det(T) denote the determinant polynomial of T.

Lemma 10 $\forall \sigma \in S_n$ which have an odd cycle, $\exists \sigma' \in S_n$ such that: $Value(\sigma) = -Value(\sigma')$

Proof: Let $P = \{ \sigma \in S_n | \sigma \text{ has an odd cycle} \}$ We can establish a bijection $f : P \to P$ as follows: For each $\sigma \in P$.

Choose the odd cycle in σ which has the least numbered vertex, call it C. Reverse C to get a permutation σ' .

Define $f(\sigma) = \sigma'$

We can observe that f is a bijection by definition and that $Value(\sigma) = -Value(f(\sigma))$.

Remark 11 In the determinant polynomial, all the $\sigma \in P$ get killed by $f(\sigma)$ due the the above lemma. Hence, only the permutations $\sigma \in S_n \setminus P$ survive.

Claim 12 G has a perfect matching $\iff det(T)$ is not identically zero.

Proof:

(⇒): If det(D) is not identically zero, then there exists at least one permutation $\sigma \in S_n \setminus P$ that has value(σ)≠ 0. $M = \{(i, j) \in E | \sigma(i) = j\}$ will form a perfect matching of G (from fact).

(⇐): if G has a perfect matching M, then M corresponds to a permutation $\sigma \in S_n \setminus P$. σ survives in the polynomial det(T) and $Value(\sigma) \neq 0$ since $\forall i \ A_{i,\sigma(i)} \neq 0$

Claim 13 Checking if the determinant polynomial p of degree n on m variables is not identically zero can be done in RNC

Proof: Same as claim 7

Theorem 14 The problem of checking if a given graph G = (V, E) has a perfect matching is in RNC

Proof: Follows from Claim 12 and Claim 13.

3 Constructing a Perfect Matching

Now we give an algorithm to construct a perfect matching in RNC.

3.1 Exactly one perfect matching

Suppose the given graph G has exactly one perfect matching M, then For any $(i, j) \in |E|$, remove vertices i and j along with all their incident edges from G to get G'.

Fact 15 G' has a perfect matching $\iff (i, j) \in M$

Consider the following algorithm for constructing the unique perfect matching in G: The algorithm uses |E| number of processors. i.e., one processor $P_{(i,j)}$ for each edge $(i, j) \in E$. The algorithm is as follows:

Each processor $P_{(i,j)}$ checks if removal of vertices *i* and *j* along with all their incident edges results in a graph that has a perfect matching.

If yes, then $P_{(i,j)}$ outputs 1. Else outputs 0

The edges $(i, j) \in E$ corresponding to processors that output 1 are the edges in the perfect matching.

Claim 16 (Correctness): The above algorithm indeed outputs 1 for all edges which belong to the perfect matching.

Proof: Follows from fact 15.

Claim 17 The above algorithm works in RNC.

Proof: Clearly there are polynomial number of processors. And each processor tests the existence of a perfect matching in a smaller graph. Existence of a perfect matching can be done in RNC by Theorem 14. Hence the above algorithm works in RNC.

Theorem 18 Constructing the perfect matching for a graph G that is known to have exactly one perfect matching can be done in RNC.

Proof: Follows from the above algorithm, Claim 16, and Claim 17.

3.2 More than one perfect matching

Now, we consider the case where the graph G could possibly have more than one perfect matchings. We will need the following lemma:

Lemma 19 (Isolation Lemma): Let $S = x_1, x_2, ..., x_m$. Let F be a family of subsets of S. Let $w : S \to 1, 2, ..., N$ be a weight function which assigns weights independently at random to each $x \in S$. Define weight of a set w(Y) to be $\sum_{y \in Y} w(y)$. Call w isolating for F if the subset in F that gets minimum weight is unique. Then,

$$Pr[w \text{ is isolating for } S] \ge 1 - \frac{n}{N}$$

We can think of E as S and the set of all perfect matchings of G as F. We assign a weight $w_{i,j}$ for each edge $(i, j) \in E$ uniformly at random from the range 1, 2, ..., 2|E|. By Isolation Lemma, $Pr[minweightperfectmatchingisunique] \geq \frac{1}{2}$. We now create a modified Tutte Matrix A of G as follows:

$$a_{i,j} = 2^{w_{i,j}}$$
 if $(i,j) \in E$

Let the min weight perfect matching of G be M and let w(M) = W Let σ be the permutation corresponding to M. Then,

$$value(\sigma) = \prod_{i=1}^{n} a_{i,\sigma(i)}$$
$$= 2^{2W}$$

Since each edge weight is being accounted for twice.

Claim 20 The largest power of 2 that divides det(A) is 2W.

Proof: This follows from the fact that the permutation corresponding to the unique minimum weight matching has value 2^{2W} . And all other permutations have a value greater than 2^{2W} .

Claim 21 Let M be the unique minimum weight perfect matching, and let W be weight of M. Then

$$(i,j) \in M \iff \frac{\det(A_{i,j})}{2^{2W}} \cdot 2^{w_{i,j}} \text{ is odd}$$

where $A_{i,j}$ stands for the minor of A obtained by removing the *i*^th and the *j*^th vertex along with all the edges incident on them from G.

Proof:

If $(i, j) \in M$, then the permutation that corresponds to M has value $\pm 2^{2W}$ depending on its sign, while every other permutation will have value as a higher power of 2 (or will cancel out if the permutation has an odd cycle). And so, $\frac{\det(A_{i,j})}{2^{2W}} \cdot 2^{w_{i,j}}$ would be an odd number by claim 20.

On the other hand, if $(i, j) \notin M$, then every permutation has value 2^k , where k > 2W. And hence $\frac{\det(A_{i,j})}{2^{2W}} \cdot 2^{w_{i,j}}$ would be an even number.

We can now give an efficient radomized parallel algorithm for constructing a perfect matching when the input graph G has a perfect matching as follows:

- Compute the values det(A) and W.
- Compute adjoint(A). $det(A_{i,j} is now the entry (j, i) in adjoint(A)$.

- For each edge (i, j), compute $\frac{det(A_{i,j})}{2^{2W}} \cdot 2^{w_{i,j}}$ in parallel
- Output edge (i, j) iff the above computed value is odd.

Fact 22 Matrix inversion can be done in RNC using $O(n^{3.5}|E|)$ processors.

Theorem 23 Constructing a perfect matching for a graph G that has a perfect matching can be done in RNC.

Proof: Follows from the algorithm. Randomness is needed to assign weights. And the only non-trivial step is that of computing the adjoint. This can be achieved in NC by fact 22. ■

4 Minimum weight Perfect Matching

In this section we consider the problem of finding a minimum weight perfect matching in a given weighted graph G with edge weights w(e). The edge weights are given as input in unary.

We follow a similar strategy as the previous case - We isolate exactly one perfect matching and then construct that matching like before. Note that if we scale up all edge weights by a multiplicative factor of |E||V|, then, the minimum weight perfect matchings will be lighter than the remaining matchings by at least |E||V|. After scaling up, we use the Isolation Lemma to isolate one of the possibly many minimum weight perfect matchings. The algorithm is as follows:

Let |E| = m and |V| = n

- For each edge $e \in E$, with edge weight w_e , assign new edge weight $w(e) = m \cdot n \cdot w_e + r(e)$, where r(e) is chosen uniformly at random from the range 1, 2, ..., 2m.
- Run the algorithm for constructing a perfect matching described in previous section.

Since the isolation lemma works in this setting as well, the algorithm would output the minimum weight perfect matching of G similar to the previous section. The reason we need to scale up the weights by a factor of mn is so as to maintain a large gap between the minimum weight perfect matchings and the remaining ones. We need to have a large gap so that the random weights that we add to each weight to isolate a perfect matching should not make the weight of the minimum weight perfect matching.

5 Maximum Cardinality Matching

Given a graph G with weights on edges w(e), the goal is to find a maximum cardinality matching in G. The idea is to give an algorithm that finds whether G has a matching of cardinality atleast k. Using this algorithm as a subroutine, we can do binary search on k. The algorithm for finding if G has a matching of cardinality atleast k is as follows: Let |V| = n

- Add (n-k) new vertices to the graph.
- Connect the newly added vertices to every vertex which was already present in G to get G'.
- Run the algorithm for checking existence of perfect matching.
- If the algorithm returns yes, then return Yes. Else return No

Its easy to see that the G' will have a perfect matching if and only if G has a matching of at least size k. Now do binary search on k to obtain the k which is maximal.