
Matchings in Graphs

Lecturer: Prajakta Nimbhorkar
Scribe: Karteek

Meeting: 7
18/02/2010

In this lecture we look at an “efficient” randomized parallel algorithm for each of the follow-
ing:

• Checking the existence of perfect matching in a bipartite graph.

• Checking the existence of perfect matching in a general graph.

• Constructing a perfect matching for a given graph.

• Finding a min-weight perfect matching in the given weighted graph.

• Finding a Maximum matching in the given graph.

where “efficient” means an NC-algorithm or an RNC-algorithm.

1 Definitions

Definition 1 NC: The set of problems that can be solved within poly-log time by a polynomial
number of processors working in parallel.

Definition 2 RNC: The set of problems for which there is a poly-log time algorithm which
uses polynomially many processors in parallel and in addition is allowed polynomially many
random bits and the following properties hold:

• If the correct answer is YES, the algorithm returns YES with probabilty ≥ 1
2
.

• If the correct answer is NO, the algorithm always returns NO.

2 Existence of a perfect matching

2.1 Bipartite Graphs

Here we consider the decision problem of checking if a bipartite graph has a perfect matching.
Let the given graph be G = (V,E). Let V=A∪B. Since we are looking for perfect matchings,
we only look at graphs where |A| = |B| = n, because otherwise, there cannot be a perfect
matching.

Fact 3 In a bipartite graph as above, every perfect matching can be seen as a permutation
from Sn and every permutation from Sn can be seen as perfect matching.

7-1

Let the adjacency matrix of G be A. The Edmonds Matrix D of A is defined as follows:
if Ai,j = 1 then Di,j = xi,j
else Di,j = 0
where each xi,j is a variable.
Note: dim(D)=dim(A)=n× n

Let det(D) denote the determinant polynomial of D.

det(D)=
∑
σ∈Sn

Sign(σ)·V alue(σ)

where V alue(σ) =
∏n

i=1Di,σ(i)

Claim 4 G has a perfect matching ⇐⇒ det(D) is not identically zero.

Proof:
(⇒): If det(D) is not identically zero, then there exists at least one permutation σ that has
value(σ) 6= 0.
M = {(i, j) ∈ E|σ(i) = j} will form a perfect matching of G (from fact).

(⇐): if G has a perfect matching M, then M corresponds to a permutation σ ∈ Sn. Value(σ)
6= 0 since ∀i Ai,σ(i) 6= 0

Fact 5 Problem of computing the determinant of a matrix is in NC

Lemma 6 (Schwartz Zippel):
Let p be a polynomial of degree n on m variables.
Let Ω be a set of integers, |Ω| = N
then,
Prā∈RΩ[p(ā) 6= 0] ≥ 1− n

N

where ā = a1, a2, ..., am

Claim 7 Checking if the determinant polynomial p of degree n on m variables is not iden-
tically zero can be done in RNC

Proof: The algorithm is as follows:
Input: Polynomial p on m variables with degree n.
Goal: If p is not identically 0, output 1 with probability ≥ 1

2
. If p is indeed identically 0,

output 0 with probability 1

Take Ω such that |Ω| ≥ 2× n

• Choose a random assignment ρ for the m variables from Ω.

7-2

• Run the NC algorithm for determinant on D with the assignment ρ.

• If the above step returns zero, then output 0

• Else output 1.

We can observe the following:

• The above algorithm satisfies the goals by virtue of the Schwartz-Zippel Lemma.

• The above algorithm uses polynomially many random bits.

Hence, we conclude that the above algorithm is indeed in RNC.

Theorem 8 The problem of checking if a given bipartite graph G = (V,E) has a perfect
matching is in RNC

Proof: Follows from Claim 4 and Claim 7.

2.2 General Graphs

Here we consider the decision problem of checking if a graph has a perfect matching in the
more general setting where the graph need not be bipartite.
Let G = (V,E) be the given graph. Let |V | = 2·n. Assume that V is ordered.

Fact 9 Permutations from Sn without an odd cycle correspond to a perfect matching in G
and vice-versa.

Let the adjacency matrix of G be A.
The Tutte Matrix T of A is defined as follows:

ti,j = xi,j if ai,j = 1 and i < j

ti,j = −xj,i if ai,j = 1 and j < i

ti,j = 0 Otherwise .

where each xi,j is a variable.
Note: T is a skew symmetric matrix and dim(T)=dim(A)=n× n.

Let det(T) denote the determinant polynomial of T .

7-3

Lemma 10 ∀σ ∈ Sn which have an odd cycle, ∃σ′ ∈ Sn such that:
Value(σ)=−Value(σ′)

Proof: Let P = {σ ∈ Sn|σ has an odd cycle} We can establish a bijection f : P → P as
follows: For each σ ∈ P .
Choose the odd cycle in σ which has the least numbered vertex, call it C. Reverse C to get
a permutation σ′.
Define f(σ) = σ′

We can observe that f is a bijection by definition and that Value(σ)=−Value(f(σ)).

Remark 11 In the determinant polynomial, all the σ ∈ P get killed by f(σ) due the the
above lemma. Hence, only the permutations σ ∈ Sn \ P survive.

Claim 12 G has a perfect matching ⇐⇒ det(T) is not identically zero.

Proof:
(⇒): If det(D) is not identically zero, then there exists at least one permutation σ ∈ Sn \P
that has value(σ)6= 0.
M = {(i, j) ∈ E|σ(i) = j} will form a perfect matching of G (from fact).

(⇐): if G has a perfect matching M, then M corresponds to a permutation σ ∈ Sn \ P .
σ survives in the polynomial det(T) and Value(σ) 6= 0 since ∀i Ai,σ(i) 6= 0

Claim 13 Checking if the determinant polynomial p of degree n on m variables is not iden-
tically zero can be done in RNC

Proof: Same as claim 7

Theorem 14 The problem of checking if a given graph G = (V,E) has a perfect matching
is in RNC

Proof: Follows from Claim 12 and Claim 13.

3 Constructing a Perfect Matching

Now we give an algorithm to construct a perfect matching in RNC.

7-4

3.1 Exactly one perfect matching

Suppose the given graph G has exactly one perfect matching M , then For any (i, j) ∈ |E|,
remove vertices i and j along with all their incident edges from G to get G′.

Fact 15 G′ has a perfect matching ⇐⇒ (i, j) ∈M

Consider the following algorithm for constructing the unique perfect matching in G:
The algorithm uses |E| number of processors. i.e., one processor P(i,j) for each edge (i, j) ∈ E.
The algorithm is as follows:
Each processor P(i,j) checks if removal of vertices i and j along with all their incident edges
results in a graph that has a perfect matching.
If yes, then P(i,j) outputs 1. Else outputs 0
The edges (i, j) ∈ E corresponding to processors that output 1 are the edges in the perfect
matching.

Claim 16 (Correctness): The above algorithm indeed outputs 1 for all edges which belong
to the perfect matching.

Proof: Follows from fact 15.

Claim 17 The above algorithm works in RNC.

Proof: Clearly there are polynomial number of processors. And each processor tests the
existence of a perfect matching in a smaller graph. Existence of a perfect matching can be
done in RNC by Theorem 14. Hence the above algorithm works in RNC.

Theorem 18 Constructing the perfect matching for a graph G that is known to have exactly
one perfect matching can be done in RNC.

Proof: Follows from the above algorithm, Claim 16, and Claim 17.

3.2 More than one perfect matching

Now, we consider the case where the graph G could possibly have more than one perfect
matchings. We will need the following lemma:

Lemma 19 (Isolation Lemma): Let S = x1, x2, ..., xm. Let F be a family of subsets of S.
Let w : S → 1, 2, ..., N be a weight function which assigns weights independently at random
to each x ∈ S. Define weight of a set w(Y) to be

∑
y∈Y w(y). Call w isolating for F if the

subset in F that gets minimum weight is unique. Then,

Pr[w is isolating for S] ≥ 1− n

N

7-5

We can think of E as S and the set of all perfect matchings of G as F . We assign a weight
wi,j for each edge (i, j) ∈ E uniformly at random from the range 1, 2, ..., 2|E|. By Isolation
Lemma, Pr[minweightperfectmatchingisunique] ≥ 1

2
. We now create a modified Tutte

Matrix A of G as follows:
ai,j = 2wi,j if (i, j) ∈ E

Let the min weight perfect matching of G be M and let w(M) = W Let σ be the
permutation corresponding to M .
Then,

value(σ) =
∏n

i=1 ai,σ(i)

= 22W

Since each edge weight is being accounted for twice.

Claim 20 The largest power of 2 that divides det(A) is 2W .

Proof: This follows from the fact that the permutation corresponding to the unique mini-
mum weight matching has value 22W . And all other permutations have a value greater than
22W .

Claim 21 Let M be the unique minimum weight perfect matching, and let W be weight of
M . Then

(i, j) ∈M ⇐⇒ det(Ai,j)

22W
· 2wi,j is odd

where Ai,j stands for the minor of A obtained by removing the ith and the jth vertex along
with all the edges incident on them from G.

Proof:
If (i, j) ∈M , then the permutation that corresponds to M has value ±22W depending on

its sign, while every other permutation will have value as a higher power of 2 (or will cancel

out if the permutation has an odd cycle). And so,
det(Ai,j)

22W · 2wi,j would be an odd number by
claim 20.
On the other hand, if (i, j) /∈M , then every permutation has value 2k, where k > 2W . And

hence
det(Ai,j)

22W · 2wi,j would be an even number.

We can now give an efficient radomized parallel algorithm for constructing a perfect
matching when the input graph G has a perfect matching as follows:

• Compute the values det(A) and W .

• Compute adjoint(A). det(Ai,j is now the entry (j, i) in adjoint(A).

7-6

• For each edge (i, j), compute
det(Ai,j)

22W · 2wi,j in parallel

• Output edge (i, j) iff the above computed value is odd.

Fact 22 Matrix inversion can be done in RNC using O(n3.5|E|) processors.

Theorem 23 Constructing a perfect matching for a graph G that has a perfect matching
can be done in RNC.

Proof: Follows from the algorithm. Randomness is needed to assign weights. And the only
non-trivial step is that of computing the adjoint. This can be achieved in NC by fact 22.

4 Minimum weight Perfect Matching

In this section we consider the problem of finding a minimum weight perfect matching in
a given weighted graph G with edge weights w(e). The edge weights are given as input in
unary.
We follow a similar strategy as the previous case - We isolate exactly one perfect matching
and then construct that matching like before. Note that if we scale up all edge weights by a
multiplicative factor of |E||V |, then, the minimum weight perfect matchings will be lighter
than the remaining matchings by at least |E||V |. After scaling up, we use the Isolation
Lemma to isolate one of the possibly many minimum weight perfect matchings.The algorithm
is as follows:
Let |E| = m and |V | = n

• For each edge e ∈ E, with edge weight we, assign new edge weight w(e) = m·n·we+r(e),
where r(e) is chosen unifromly at random from the range 1, 2, ..., 2m.

• Run the algorithm for constructing a perfect matching described in previous section.

Since the isolation lemma works in this setting as well, the algorithm would output the
minimum weight perfect matching of G similar to the previous section. The reason we need
to scale up the weights by a factor of mn is so as to maintain a large gap between the
minimum weight perfect matchings and the remaining ones. We need to have a large gap
so that the random weights that we add to each weight to isolate a perfect matching should
not make the weight of the minimum weight perfect matching become larger than that of
some other matching.

5 Maximum Cardinality Matching

Given a graph G with weights on edges w(e), the goal is to find a maximum cardinality
matching in G. The idea is to give an algorithm that finds whether G has a matching of
cardinality atleast k. Using this algorithm as a subroutine, we can do binary search on k.
The algorithm for finding if G has a matching of cardinality atleast k is as follows:
Let |V | = n

7-7

• Add (n− k) new vertices to the graph.

• Connect the newly added vertices to every vertex which was already present in G to
get G′.

• Run the algorithm for checking existence of perfect matching.

• If the algorithm returns yes, then return Yes. Else return No

Its easy to see that the G’ will have a perfect matching if and only if G has a matching
of at least size k. Now do binary search on k to obtain the k which is maximal.

7-8

