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1 Matching using Linear Programming

We look at the linear programming method for the maximum matching and perfect matching
problems. Given a graph G = (V,E), an integer linear program (ILP) for the maximum
matching problem can be written by defining a variable xe for each edge e ∈ E and a
constraint for each vertex u ∈ V as follows:

Maximize
∑

e∈E

xe subject to

∀u ∈ V
∑

e∼u

xe ≤ 1

∀e ∈ Exe ∈ {0, 1}

Here e ∼ u denotes e is incident on u. It can be seen that the optimum solution to this ILP

is indeed a maximum matching in G. Therefore an algorithm to solve ILP can be used to
get a maximum matching in G. However, ILP is known to be NP-complete and hence there
is no polynomial-time algorithm known for it.

LP relaxation One way to deal with this is to relax the integrality constraints and allow
xe ∈ [0, 1] to get a linear program, which can be solved in polynomial-time. However, this
gives rise to fractional matchings. Characteristic vectors of matchings in G can be seen as
points in Rm where m = |E|. The convex hull of all the matchings forms a polytope called
the matching polytope M. However, the LP relaxation may give matchings that are outside
M. Figure 1 shows some examples.

It can be seen that, in examples (1) and (2) in Figure 1, the matching polytope contains
all the fractional matchings which form the feasible region of the relaxed LP. However, in
Example (3), the maximum value of the relaxed LP is attained at the point (1

2
, 1

2
, 1

2
), which

lies outside M. We will see next that the matching polytope always contains all the fractional
matchings if and only if the graph is bipartite.

Definition 1 (Matching polytope) For a given graph G, the matching polytope M is the

convex hull of all the matchings in G. Thus

M = {
∑

i

λiMi | ∀i Mi is a matching and
∑

i

λi = 1}
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Figure 1: Some examples of LP relaxation

Definition 2 (Fractional matching polytope) The fractional matching polytope FM is

defined as the feasible region for the LP

∀u ∈ V
∑

e∼u

xe ≤ 1, ∀e ∈ E xe ∈ [0, 1]

For a graph G, M and FM may not be the same. But they are the same for bipartite graphs.

Claim 3 For bipartite graphs, the LP relaxation gives a matching as an optimal solution.

We define the perfect matchings polytope PM and the fractional perfect matchings polytope

FPM.

Definition 4 (Perfect Matching Polytope) For a given graph G, the perfect matching
polytope PM is the convex hull of all the perfect matchings in G. Thus

FM = {
∑

i

λiMi | ∀i Mi is a perfect matching in G and
∑

i

λi = 1}

Definition 5 (Fractional Perfect Matching Polytope) The fractional perfect match-
ing polytope FPM is defined as the feasible region for the LP

∀u ∈ V
∑

e∼u

xe = 1, ∀e ∈ E xe ∈ [0, 1]

Claim 6 1. M⊆ FM, PM⊆FPM
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2. If G is bipartite then M=FM and PM=FPM

3. If G is non-bipartite, M6=FM

Proof:
Proof of 1: It can be seen that any matching in G satisfies the constraints for FM. Thus

the extreme points of M are all contained in FM and hence M⊆FM. Similarly, PM⊆FPM.
Proof of 2: Note that all the vertices of M are in {0, 1}m, where m = |E|. Further,

any vertex in FM∩{0, 1}m is also in M. Thus, it suffices to prove that all the vertices of
FM are integral. Assume that there is a non-integral vertex x of FM. We will show that x
can be written as a convex combination of two points in FM, which contradicts the above
assumption.

Define Gx = (V,Ex) where Ex = {e|xe /∈ {0, 1}}. Suppose Gx has a cycle C. Let a and
b be the minimum and maximum values of xe for e ∈ C respectively. We refer to xe as the
weight on e. Define ǫ = min 1 − b, a. Define two matchings x+ and x− obtained from x by
adding and subtracting ǫ from the weights on alternate edges of C. Then x = 1

2
(x+ + x−).

(See e.g. Figure 2.)
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Figure 2: Expressing a cycle in x as a convex combination of x+ and x−

If Gx has no cycle, pick any maximal path in Gx. The end-points of the path have weights
strictly less than 1 on the edges incident on them. Define a, b, ǫ and construct x+ and x− as
before, which again contradicts the extremality of x.

Similar argument works for PM=FPM, except that the case Gx being acyclic does not
arise.

Proof of 3: Let G be non-bipartite. Take an odd cycle C in G. Consider a fractional
matching x that has weights 1

2
on each of the edges in C. It can be seen that this matching

is in FM but it can not be written as a convex combination of any two or more matchings.

Claim 7 All the vertices of FM are half-integral.

We will prove the following stronger version:

Theorem 8 For any graph G, x ∈FPM if and only if x satisfies the following conditions:
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1. ∀e ∈ E xe ∈ {0, 1, 1
2
}

2. Let G0 = (V,E0) where E0 = {e ∈ E|xe = 1
2
}. Then G0 is a collection of disjoint odd

cycles.

We first recall the following properties of a convex polytope P:

1. A point x is a vertex of P if and only if x can not be written as a convex combination
of any y, z ∈ P.

2. There is a hyperplane H such that {x} = H ∩ P.

3. If P is given as an intersection of half-spaces, then x is a unique solution to a set of m
linearly independent constraints met as equalities.

Proof of Theorem 8: First we prove that, if x satisfies the two conditions, then x is a
vertex. Thus assume that x ∈ {0, 1, 1

2
}m. Define

E0 = {e ∈ E|xe =
1

2
}

E1 = {e ∈ E|xe = 1}

E2 = {e ∈ E|xe = 0}

To show that x is a vertex, define a hyperplane H = {y|
∑

e weye = a}, we = −1 if xe = 0
and we = 0 if xe > 0. As wT x = 0, a = 0. Suppose {y} = H∩FPM. Then y|E2

= 0. Thus
ye = 0 whenever xe = 0. From the constraints of FPM, it can be seen that y|E1

= 1 and
y|E0

= 1
2
, since we have only odd cycles in the graph restricted to E0. Thus y can not be

different from x and thus x is a vertex with {x} = H∩FPM.
Now we prove the other direction. Let x be a vertex of FPM. We will prove that x

satisfies the two conditions. Let H be the hyperplane such that {x} = H∩FPM. Further,
let H = {z|wT z = a}. Interpret the adjacency matrix of G as bipartite adjacency matrix.
Equivalently, define a bipartite graph G′ = (V ′, V ′′, E ′) such that V ′ = V ′′ = V . Thus each
u ∈ V has a copy u′ ∈ V ′ and u′′ ∈ V ′′. Further, for each E ′ = {(u′, v′′), (v′, u′′)|(u, v) ∈ E}.
Thus |E ′| = 2m. Each matching x in G also has a corresponding matching y in G′ such that
(u, v) ∈ x ⇒ (u′, v′′), (v′, u′′) ∈ y. As G′ is bipartite, y ∈FPM(G′) and y ∈PM(G′).

Define hyperplane H ′ = {z|w′T z = 2a} where w′ is obtained by concatenating the vector
w with itself. Clearly, x ∈ H ⇔ y ∈ H ′. Now we show that {y} = H ′∩FPM(G′) ⇔ {x} =
H∩FPM(G).

Let {z} = H ′∩FPM(G′). Therefore w′T z = 2a. Define a new vector x′ such that ∀e ∈
E, x′

e =
ze1

+ze2

2
where e1 and e2 are copies of e ∈ E. Clearly, wT x′ = a and x′ ∈FPM(G).

Therefore x′ ∈ H∩FPMand thus x′ = x. Therefore z = y and hence y is integral. This shows
that x is half-integral, which proves the first condition of the theorem.

For the second condition, let x have an even cycle with weights 1
2

on all its edges. Then x
can be written as a convex combination of two matchings which contain alternate edges from
the cycle. Thus presence of an even cycle in G0 implies that x is not a vertex. Therefore G0

contains disjoint odd cycles.
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As we have seen, for non-bipartite graphs, FPM*PM. This happens precisely because an
odd subset of vertices can have a fractional perfect matching but not an integral one. Hence
we need to introduce more constraints for the FPM polytope, which essentially require that
at least one vertex of each odd subset be matched outside the subset. With this additional
constraint, we define a new perfect matching polytope

P(G) = {x ∈ Rm|xe ≥ 0, ∀e ∈ E
∑

e∼u

xe = 1, ∀S ⊆ V, |S| odd ,
∑

e∈E(S,S̄)

xe ≥ 1}

Similarly define a new fractional matching polytope

MP (G) = {x ∈ Rm|xe ≥ 0, ∀e ∈ E
∑

e∼u

xe ≤ 1, ∀S ⊆ V, |S| odd ,
∑

e∈E(S)

xe ≤
|S| − 1

2
}

Theorem 9 (Edmonds Theorem) PM(G) =P(G)

Before proving Edmonds theorem, we prove that Edmonds theorem implies the following
claim:

Claim 10 MP(G) =M(G)

Proof: Construct a new graph H = (V ′, E ′) as follows: Take two disjoint copies of G, say
G1, G2 and for each u ∈ V , add edges (u1, u2) such that u1 and u2 are the copies of u in G1

and G2 respectively. For x ∈MP(G), we construct y ∈P(H) such that both the copies of the
edge e ∈ E have weight xe in y. Moreover, for each vertex u ∈ V that has a deficit in x, we
add the edge (u1, u2) to y with a weight equal to the deficit of u in x.

We show that y satisfies the constraints of P(H). It is easy to see that y satisfies the first
two constraints of P(H). To see that y satisfies the third constraint as well, consider an odd
cardinality subset of vertices in H. Let S = X1 ∪ Y2 where X1 ⊆ V (G1) and Y2 ⊆ V (G2).
Let

∑
e ∈ E ′(S, S̄) = δ(S). Therefore

δ(S) ≥ δ(X1 \ Y1) + δ(X2 \ Y2)

where Y1 and X2 are copies of Y2 in G1 and of X1 in G2 respectively.
Without loss of generality, we assume that X and Y are disjoint in G, and also Y 6= ∅ and

that |X| is odd. Since |X| is odd, there is a deficit of at least |S|− |S|−1
2

, which is added to the
edges going out of X. Thus y satisfies the third constraint too and hence y ∈P(H). ∴ x ∈
MP(G) ⇒ y ∈P(H). But P(H) =PM(H) by Edmonds theorem. Therefore we can write y
as a convex combination of perfect matchings in H, from which, a convex combination of
matchings for x can be computed.

Now we can restrict ourselves to perfect matchings and prove Edmonds theorem:
Proof of Theorem 9: We prove the theorem by contradiction. Let G be a graph such that
∃x ∈ P(G)\ PM(G). Take the smallest such G i.e. a graph with minimum number of vertices
and breaking ties by picking a graph with minimum number of edges, which satisfies this
condition. Consider x as defined above for G. By minimality of G, we have the following:
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1. ∀e ∈ E, 0 < xe < 1. Otherwise we can discard edges with xe = 0, contradicting the
minimality of G.

2. There are no pendant vertices in G.

3. ∃v ∈ V such that degree(v) > 2. Otherwise G is a collection of disjoint cycles. The
cycles can not be odd as G satisfies the constraints of P(G). Then G is bipartite and
hence can not be a counter example by Claim 6. Thus m > n.

Without loss of generality, assume x to be a vertex of P(G). Therefore it is the unique solution
of m linearly independent constraints satisfied as equalities. By 1 above, the constraints can
not be of the form xe ≤ 0. There are only n constraints of the form

∑
e∼u xe = 1. Therefore

at least one constraint should be of the form
∑

e∈E(S,S̄) xe ≥ 1. Let S be a subset where such

a constraint is satisfied by x with equality. Further, |S|, |S̄| > 1, otherwise the constraint
will be of the form

∑
e∼u xe = 1.

Construct G1 and G2 as follows: In G1, S̄ is contracted to a single vertex s̄, S remains
the same as in G, and multiple edges obtained are replaced by single edges. Similarly, define
G2 by contracting S to s and leaving S̄ as in G. Let x1 be the restriction of x to G1 such that
the edges incident on s̄ get a weight equal to the sum of the weights of the corresponding
edges in x. Similarly construct x2 as restriction of x to G2. Clearly x1 ∈ P(G1). But G1 is
smaller than G and hence P(G1) =PM(G1). Similarly, P(G2) =PM(G2). Therefore x1 and
x2 can be written as convex combinations of perfect matchings in G1 and G2 respectively:

x1 =
∑

i

αiLi Li : perfect matching in G1,
∑

i

αi = 1, ∀i αi ≥ 0

x2 =
∑

j

βjNj Nj : perfect matching in G2,
∑

j

βj = 1, ∀j βj ≥ 0

Consider perfect matchings L in G1 and N in G2 from above convex combinations. Let
uL (respectively vN) be the vertex in G1 (G2) which is matched to s̄ (s) in L (N). If
(uL, vN) ∈ E, then L \ {(uL, s̄)} ∪ N \ {(s, vN)} ∪ {(uL, vN)} is a perfect matching in G.
Construct such perfect matchings Mij for all the pairs (Li, Nj) wherever (uLi

, vNj
) ∈ E. We

claim that x can be written as a convex combination of Mijs.

Claim 11 ∃γij such that x =
∑

i,j γijχMij
. In fact γij =

αiβj

xuivj

such that ∀e ∈ E(S) xe =
∑

i:e∈Li

∑
j:vj∼ui

γij, and
∑

i,j γij = 1.

The claim contradicts the assumption that x is a vertex of P(G).
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