Matchings in Graphs

Lecturer: Meena Mahajan Meeting: 3-4 Scribe: Rajesh Chitnis 21-28th January 2010

1 Some preliminary definitions

Definition 1 Let $\rho(G)$ denote the size of maximum matching in G. A vertex $v \in V(G)$ is called **critical** if $\rho(G) > \rho(G - v)$

Definition 2 We define three special subsets of the vertex set of G.

 $D(G) = \{ u : u \text{ is not critical } \}$

 $A(G) = \{ u : u \text{ is critical and has a non-critical neighbour } \}$

 $C(G) = \{ u : u \text{ is critical and all neighbours of } u \text{ are critical } \}$

The set A(G) is called as the **Tutte Set** of G. Clearly, the sets D(G), A(G) and C(G) partition the vertex set of G.

Definition 3 Let $\mathcal{L} = \{M_1, \dots, M_d\}$ be a family of equisized matchings in G. We again define three subsets of the vertex set of G using the family \mathcal{L} .

 $D(\mathcal{L}) = \{ u : \exists i \in [d] \text{ such that } u \text{ is free in } M_i \}$

 $A(\mathcal{L}) = \{ u : u \notin D(\mathcal{L}) \text{ and } u \text{ has a neighbour in } D(\mathcal{L}) \}$

 $C(\mathcal{L}) = V(G) \setminus (D(\mathcal{L}) \cup A(\mathcal{L}))$

2 Some Remarks

Remark 4 We cannot let \mathcal{L} be the set of all maximum sized matchings in G since $|\mathcal{L}|$ may be exponential which would inhibit us searching for a polynomial time algorithm

Remark 5 Surprisingly we will show that \exists a polynomial sized family of maximum matchings in G such that

$$D(\mathcal{L}) = D(G)$$

$$A(\mathcal{L}) = A(G)$$

$$C(\mathcal{L}) = C(G)$$

3 Structural Algorithm to find Maximum Matching

The following algorithm returns a maximum cardinality matching along with a witness set.

```
M = \emptyset; \mathcal{L} = \{M\}
Step One - Find M \in \mathcal{L} that is not \mathcal{L}-good M' = \operatorname{NextMatch}(M, \mathcal{L})
if |M'| = |M| + 1 then \mathcal{L} = \{M'\}; Update D, A, C and go to Step One else D(\mathcal{L}) \nsubseteq D(\mathcal{L} \cup \{M\})
i.e. M' leaves a vertex x in A(\mathcal{L}) \cup C(\mathcal{L}) free; |M'| = |M|; \mathcal{L} = \mathcal{L} \cup \{M'\}; Update D, A, C and go to Step One end if
```

Output any $M \in \mathcal{L}$

The **NextMatch** sub-routine is described at a later stage.

4 Preliminaries regarding above algorithm

Definition 6 A matching $M \in \mathcal{L}$ is said to be \mathcal{L} -good if

- 1. M does not match any vertex of $A(\mathcal{L})$ to any vertex of $A(\mathcal{L}) \cup C(\mathcal{L})$
- 2. M is near-perfect on all components of $G[D(\mathcal{L})]$

Note that above definiton implicitly implies that all components of $G[D(\mathcal{L})]$ are odd.

Lemma 7 Let \mathcal{L} be a family of equisized matchings and let $M \in \mathcal{L}$. If M is \mathcal{L} -good, then

- 1. M is a maximum matching
- 2. $A(\mathcal{L})$ is a witness set

Proof: All components of $C(\mathcal{L})$ are even as they have perfect matchings. On the other hand all components of $D(\mathcal{L})$ are odd since they have near-perfect matchings. Hence $o(G - A(\mathcal{L}))$ is equal to number p of connected components of $D(\mathcal{L})$. Now, for every vertex in $A(\mathcal{L})$ there is a matching edge connecting it to a vertex in a unique component of $D(\mathcal{L})$. The number

of free vertices is equal to $(p-\mid A(\mathcal{L})\mid) = (o(G-A(\mathcal{L}))-\mid A(\mathcal{L})\mid) = def(A(\mathcal{L}))$. Thus, $A(\mathcal{L})$ is a witness set and M is a maximum matching

Corollary 8 Let \mathcal{L} be a family of equisized matchings. If one matching from \mathcal{L} is \mathcal{L} -good then every element of \mathcal{L} is \mathcal{L} -good.

Proof: Let $M \in \mathcal{L}$ be \mathcal{L} -good. Then by Lemma 7, M is maximum and $A(\mathcal{L})$ is a witness set. Thus $|M| = \frac{|V| + |A| - o(G - A)}{2} = \frac{|V| + |A| - o(D)}{2}$ as $C(\mathcal{L})$ has perfect matchings and so each component is even. Let $M' \in \mathcal{L}$. Then $\frac{|V| + |A| - o(D)}{2} = |M| = |M'|$. In the matching M' let there be l_1, l_2 edges from $A(\mathcal{L})$ to $D(\mathcal{L}), C(\mathcal{L})$ repectively. Noting that G has no edges between $D(\mathcal{L})$ and $C(\mathcal{L})$, we have $|M'| \leq \frac{|D| - o(D)}{2} + l_1 + \frac{|A| - l_1 - l_2}{2} + l_2 + \frac{|C| - l_2}{2} = \frac{|V| + l_1 - o(D)}{2}$. Recalling that $|M'| = |M| = \frac{|V| + |A| - o(D)}{2}$, we have $l_1 \geq |A|$. But l_1 was number of edges from $A(\mathcal{L})$ to $D(\mathcal{L})$ in M' and hence $l_1 = |A(\mathcal{L})|$. So M' has no edges from $A(\mathcal{L})$ to $A(\mathcal{L}) \cup C(\mathcal{L})$. Also looking carefully at the bound on |M'| we see that M' must pick maximum possible edges from each component of $D(\mathcal{L})$ which would mean a near-perfect matching for each component of $D(\mathcal{L})$. Thus M' is also \mathcal{L} -good.

5 Gallai-Edmond Structure Theorem

The vertex set of G can be partitioned into three sets D(G), A(G) and C(G) such that

- 1. A(G) is a witness set
- 2. G[C(G)] has a perfect matching
- 3. Any maximum matching in G
 - Is perfect on G[C(G)]
 - \bullet Is near-perfect on each component of G[D(G)]
 - Matches vertices in A(G) to distinct components in G[D(G)]
- 4. Each component of G[D] is hypomatchable or factor-critical i.e. if we remove any vertex from a component of G[D], then that component has a perfect matching.

6 The NextMatch sub-routine

NextMatch (M, \mathcal{L}) is a sub-routine applied when $M \in \mathcal{L}$ and M is \mathcal{L} -bad

1. $\exists x \in A \text{ such that } y = M(x) \notin D$. Note that $x \in A$ implies $\exists \text{ some neighbour } z \text{ of } x \text{ such that } z \in D$

- (a) If z is free in M, then y is free in M' = M + xz xy
- (b) Suppose z is not free in M. But $z \in D$ and so $\exists N \in \mathcal{L}$ s.t. z is free in N. Let ρ be a M-N alternating path starting from z. Note that the first edge of ρ is a M-edge as z is free in N. If ρ ends in a M-edge, then augment (N, ρ) . So suppose that ρ ends in a N-edge. If ρ avoids the edge xy then it also avoids the vertices x and y (as otherwise it would have to use the edge xy). We switch M on $\rho + xz + xy$ to release y. Only case left is that ρ uses edge xy. Suppose ρ uses xy through y first. Then do M - xy and switch on the "tail" to release y. Similarly for x.

2. \exists component T of G[D] such that M is not near-perfect on T

- (a) Suppose $M|_T$ is perfect on T. Then for $x \in T$, $\exists N \in \mathcal{L}$ which leaves x free. So $N|_T$ is not perfect and hence leaves some x, y free. Go to Case 2(c)
- (b) Suppose $M|_T$ leaves some x,y free but x,y are not free in M. Now $x \in D$ implies $\exists N \in \mathcal{L}$ which leaves x free. Let ρ be a M-N alternating path starting at x. Clearly the first edge of ρ is a M-edge as x is free in N. If ρ ends in a M-edge, then augment (N,ρ) . So suppose that ρ ends in a N-edge at say some z. If $z \notin D$, then switch N to release z. So suppose $z \in D$. If ρ avoids y, then switch M on ρ and go to Case 2(c). So, only thing to consider now is that if ρ hits y. Let the last vertex before y on the M-N path be y. If y is then switch y on the sub-path y is release y. Else if y is y if y is switch on the sub-path y is release y. Else if y is y in then switch on the sub-path y is release y.
- (c) Suppose $M|_T$ leaves some x,y free but at least one of them (say x) is free in M. If $xy \in E(G)$, then if y is free in M do M+xy else do $\left(M-(y,M(y))+xy\right)$ which will release M(y). So let ρ be the shortest xy path in T. Let z be the neighbour of x on ρ . Let $N \in \mathcal{L}$ leave z free. Let η be a M-N alternating path starting at z. If $\eta = \emptyset$, then do M+xz. So assume η starts with a M-edge. If η ends with a M-edge, then augment (N,η) . So consider that η ends with a N-edge. Since x is free in M, if η visits x then it ends at x. If η does not end at x, then switch M on η and add edge xz. So assume η ends at x. If η avoids y, switch M on η to get M'. Now z,y are free in T wrt M' and z is free in G. Repeat Case 2(c) with z,y instead of x,y and note that $d_T(z,y) < d_T(x,y)$. Else η goes through y. Then switch M on the subpath $x \to u$ of $(\eta + xz)$ thus releasing u