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1 Some preliminary definitions

Definition 1 Let ρ(G) denote the size of maximum matching in G. A vertex v ∈ V (G) is
called critical if ρ(G) > ρ(G− v)

Definition 2 We define three special subsets of the vertex set of G.
D(G) = { u : u is not critical }
A(G) = { u : u is critical and has a non-critical neighbour }
C(G) = { u : u is critical and all neighbours of u are critical }
The set A(G) is called as the Tutte Set of G. Clearly, the sets D(G), A(G) and C(G)
partition the vertex set of G.

Definition 3 Let L = {M1, . . . ,Md} be a family of equisized matchings in G. We again
define three subsets of the vertex set of G using the family L.
D(L) = { u : ∃ i ∈ [d] such that u is free in Mi }
A(L) = { u : u /∈ D(L) and u has a neighbour in D(L)}
C(L) = V (G) \

(
D(L) ∪ A(L)

)

2 Some Remarks

Remark 4 We cannot let L be the set of all maximum sized matchings in G since | L | may
be exponential which would inhibit us searching for a polynomial time algorithm

Remark 5 Surprisingly we will show that ∃ a polynomial sized family of maximum match-
ings in G such that

D(L) = D(G)

A(L) = A(G)

C(L) = C(G)
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3 Structural Algorithm to find Maximum Matching

The following algorithm returns a maximum cardinality matching along with a witness set.

M = ∅; L = {M}
Step One - Find M ∈ L that is not L-good
M ′ = NextMatch(M,L)
if |M ′ |=|M | +1 then
L = {M ′} ; Update D,A,C and go to Step One

else
D(L) * D(L ∪ {M})
i.e. M ′ leaves a vertex x in A(L) ∪ C(L) free ;
|M ′ |=|M | ; L = L ∪ {M ′} ; Update D,A,C and go to Step One

end if

Output any M ∈ L
The NextMatch sub-routine is described at a later stage.

4 Preliminaries regarding above algorithm

Definition 6 A matching M ∈ L is said to be L−good if

1. M does not match any vertex of A(L) to any vertex of A(L) ∪ C(L)

2. M is near-perfect on all components of G[D(L)]

Note that above definiton implicitly implies that all components of G[D(L)] are odd.

Lemma 7 Let L be a family of equisized matchings and let M ∈ L. If M is L-good, then

1. M is a maximum matching

2. A(L) is a witness set

Proof: All components of C(L) are even as they have perfect matchings. On the other hand
all components of D(L) are odd since they have near-perfect matchings. Hence o(G−A(L))
is equal to number p of connected components of D(L). Now, for every vertex in A(L) there
is a matching edge connecting it to a vertex in a unique component of D(L). The number
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of free vertices is equal to (p− | A(L) |) =
(
o(G − A(L))− | A(L) |

)
= def(A(L)). Thus,

A(L) is a witness set and M is a maximum matching

Corollary 8 Let L be a family of equisized matchings. If one matching from L is L-good
then every element of L is L-good.

Proof: Let M ∈ L be L-good. Then by Lemma 7, M is maximum and A(L) is a witness

set. Thus | M |= |V |+|A|−o(G−A)
2

= |V |+|A|−o(D)
2

as C(L) has perfect matchings and so each

component is even. Let M ′ ∈ L. Then |V |+|A|−o(D)
2

=| M |=| M ′ |. In the matching M ′

let there be l1, l2 edges from A(L) to D(L), C(L) repectively. Noting that G has no edges

between D(L) and C(L), we have |M ′ |≤ |D|−o(D)
2

+ l1 + |A|−l1−l2
2

+ l2 + |C|−l2
2

= |V |+l1−o(D)
2

.

Recalling that |M ′ |=|M |= |V |+|A|−o(D)
2

, we have l1 ≥| A |. But l1 was number of edges from
A(L) to D(L) in M ′ and hence l1 =| A(L) |. So M ′ has no edges from A(L) to A(L)∪ .C(L).
Also looking carefully at the bound on | M ′ | we see that M ′ must pick maximum possible
edges from each component of D(L) which would mean a near-perfect matching for each
component of D(L). Thus M ′ is also L-good.

5 Gallai-Edmond Structure Theorem

The vertex set of G can be partitioned into three sets D(G), A(G) and C(G) such that

1. A(G) is a witness set

2. G[C(G)] has a perfect matching

3. Any maximum matching in G

• Is perfect on G[C(G)]

• Is near-perfect on each component of G[D(G)]

• Matches vertices in A(G) to distinct components in G[D(G)]

4. Each component of G[D] is hypomatchable or factor-critical i.e. if we remove any
vertex from a component of G[D], then that component has a perfect matching.

6 The NextMatch sub-routine

NextMatch(M,L) is a sub-routine applied when M ∈ L and M is L-bad

1. ∃ x ∈ A such that y = M(x) /∈ D. Note that x ∈ A implies ∃ some neighbour

z of x such that z ∈ D
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(a) If z is free in M , then y is free in M ′ = M + xz − xy
(b) Suppose z is not free in M .

But z ∈ D and so ∃ N ∈ L s.t. z is free in N . Let ρ be a M −N alternating path
starting from z. Note that the first edge of ρ is a M -edge as z is free in N . If ρ
ends in a M -edge, then augment (N, ρ). So suppose that ρ ends in a N -edge. If ρ
avoids the edge xy then it also avoids the vertices x and y (as otherwise it would
have to use the edge xy). We switch M on ρ + xz + xy to release y. Only case
left is that ρ uses edge xy. Suppose ρ uses xy through y first. Then do M − xy
and switch on the “tail” to release y. Similarly for x.

2. ∃ component T of G[D] such that M is not near-perfect on T

(a) Suppose M |T is perfect on T .
Then for x ∈ T, ∃ N ∈ L which leaves x free. So N |T is not perfect and hence
leaves some x, y free. Go to Case 2(c)

(b) Suppose M |T leaves some x, y free but x, y are not free in M .
Now x ∈ D implies ∃ N ∈ L which leaves x free. Let ρ be a M −N alternating
path starting at x. Clearly the first edge of ρ is a M -edge as x is free in N . If ρ
ends in a M -edge, then augment (N, ρ). So suppose that ρ ends in a N -edge at
say some z. If z /∈ D, then switch N to release z. So suppose z ∈ D. If ρ avoids
y, then switch M on ρ and go to Case 2(c). So, only thing to consider now is that
if ρ hits y. Let the last vertex before y on the M − N path be u. If x − u − y
then switch M on the sub-path ρ \ (x−−u) to release u. Else if x− y − u then
switch on the sub-path ρ \ (x−−y) and go to Case 2(c).

(c) Suppose M |T leaves some x, y free but atleast one of them (say x) is free in M .

If xy ∈ E(G), then if y is free in M do M+xy else do
(
M−(y,M(y))+xy

)
which

will release M(y). So let ρ be the shortest xy path in T . Let z be the neighbour
of x on ρ. Let N ∈ L leave z free. Let η be a M −N alternating path starting at
z. If η = ∅, then do M + xz. So assume η starts with a M -edge. If η ends with
a M -edge, then augment (N, η). So consider that η ends with a N -edge. Since x
is free in M , if η visits x then it ends at x. If η does not end at x, then switch
M on η and add edge xz. So assume η ends at x. If η avoids y, switch M on η
to get M ′. Now z, y are free in T wrt M ′ and z is free in G. Repeat Case 2(c)
with z, y instead of x, y and note that dT (z, y) < dT (x, y). Else η goes through y.
Then switch M on the subpath x→ u of (η + xz) thus releasing u

3-4-4


