
Matchings in Graphs

Lecturer: Meena Mahajan
Scribe: Nitin Saurabh

Meeting: 11
1st April 2010

So far, we have seen the following sequential algorithms for maximum matching.

1. Edmonds’ Blossom Shrinking Algorithm, which runs in time O(n4).

2. Structural algorithm, which also runs in time O(n4).

3. Polyhedral algorithm, which runs in polynomial time but is much slower than the above
two.

The fastest known deterministic sequential algorithms run in time O(
√

nm), which are
very old. There have been no improvement since then. So today we are going to look at
randomized algorithms to construct a maximum matching in time O(nω), where ω is the
exponent for the best known matrix multiplication algorithm.

O(nω) time bound, also, suffices for the following operations :

• Computing Determinant of an n× n matrix.

• Computing Rank of an n× n matrix.

• Computing Inverse of an n× n non-singular matrix.

• Computing Maximum rank submatrix of an n× n matrix

1 Randomized algorithm for perfect matching

Let G = (V, E) be a graph, where |V | = n and |E| = m. Let us define the Tutte′s Matrix
T of G as below:

Ti,j =

ti,j , if (i, j) ∈ E and i < j

−ti,j , if (i, j) ∈ E and i > j

0 , otherwise

T is a skew-symmetric adjacency matrix.

Theorem 1 (Tutte) G has a perfect matching iff T is non-singular.

Proof: See the proof of Claim 12 in Lecture 7.

Since det(T) is a symbolic multivariate polynomial, it can have exponential length in n,
and so computing it symbolically is inefficient. However, there are randomized identity tests
for polynomials that just need to evaluate a polynomial at a random point.

11-1

Lemma 2 (Schwartz-Zippel) If p(x1, x2, . . . , xm) is a non-zero polynomial of degree d
with coefficients in a field F, then the probability that p evaluates to 0 on a random element
(f1, f2, . . . , fm) ∈ Fm is at most d

|F| .

This yields the following monte carlo algorithm.

Algorithm 1 Self-reducibility algorithm

Choose t̃ ∈ Fm.
A = T (t̃) {substitute values for indeterminates}
if det(A) = 0 then

reject
end if
for e ∈ E do

if det(A|ae=0) 6= 0 then
Set ae = 0

end if
end for
Report E

The algorithm substitute random values for the indeterminates from the field F. If A is
not full rank then algorithm halts and reject. Otherwise, for each e ∈ E it sets ae = 0 and
checks if A|ae=0 is full rank. If yes then permanently delete that edge, else restore the edge.

The Schwartz-Zippel lemma tells us that checking determinant equals zero fails with
probability at most n

|F| , where n is the degree of the polynomial det(A). Using union bound,

Pr[Error] ≤ (m + 1) · n

|F|

This, also, points out that the size of the field F should be O(n3).
The time for each determinant calculation is O(nω), so the total time required by the

algorithm is nω + (m× nω) ≈ O(nω+2).

1.1 An Improvement

Fact 3 Let M be a non-singular matrix and let N = M−1. Let M ′ be a matrix which is
identical to M except that M ′

S,S 6= MS,S, where MS,S is a submatrix containing rows S and
columns S.

1. M ′ is non-singular iff (I|S| + (M ′
S,S −MS,S) ·NS,S) is non-singular.

2. If M ′ is non-singular, then

M ′−1 = N −N∗,S · (I|S| + (M ′
S,S −MS,S) ·NS,S)−1 · (M ′

S,S −MS,S) ·NS,∗

11-2

Proof: Let MS,S = X, NS,S = X ′ and M ′
S,S = Y . Without loss of generality, we can consider

M =

(
X B
A C

)
M−1 = N =

(
X ′ B′

A′ C ′

)
M ′ =

(
Y B
A C

)
Therefore,

MN =

(
XX ′ + BA′ XB′ + BC ′

AX ′ + CA′ AB′ + CC ′

)
=

(
I 0
0 I

)
and

M ′N =

(
Y X ′ + BA′ Y B′ + BC ′

AX ′ + CA′ AB′ + CC ′

)
But AX ′ + CA′ = 0, and AB′ + CC ′ = I. Therefore,

M ′N =

(
Y X ′ + BA′ Y B′ + BC ′

0 I

)
We know that det(N) 6= 0. Hence,

det(M ′) 6= 0 ⇔ det(M ′)det(N) 6= 0

⇔ det(M ′N) 6= 0

⇔ det(Y X ′ + BA′)det(I) 6= 0 (Since, det

(
A B
0 D

)
= det(A)det(D))

⇔ det(Y X ′ + BA′) 6= 0

⇔ det(Y X ′ + I|X| −XX ′) 6= 0 (Since, XX ′ + BA′ = I|X|)

⇔ I|X| + (Y −X)X ′ is non-singular

This proves Fact 3.1. To prove Fact 3.2, multiply M ′ on the left of the given expression for
M ′−1.

Fact 4 Let M be an n × n skew-symmetric matrix and is non-singular, then M−1 is also
skew-symmetric.

In Algorithm 1, we calculate determinant of the matrix, again from start, where essen-
tially we have changed only two entries. Also, note that we only need to check whether
determinant is zero or non-zero. These observations along with Fact 3 improves the run
time as follows.

Let N = A−1. Let e = (i, j) be the edge to be deleted and S = {i, j}. By Fact 3, A|ae=0

is non-singular iff (I2 −AS,S ·NS,S) is non-singular. This can be done in constant time. If e
is not deleted then N does not change, else N must be updated. By Fact 3, N is updated to

N −N∗,S · (I2 − AS,S ·NS,S)−1 · (−AS,S) ·NS,∗

This takes O(n2) time. Therefore, for each edge, algorithm decides if it can be deleted and,
if so, then updates N . So the total time required is 2nω +m(n2) ≈ O(n4) and the probability
of error is as before.

11-3

1.2 A Recursive algorithm

Now we will show how to use lazy updates to bring down the runtime to O(nω).

Algorithm 2 Recursive algorithm

Randomly instantiate Tutte′s Matrix T to get A
if det(A) = 0 then

reject
end if
N = A−1

DeleteWithin(V)
Return E

Algorithm 3 DeleteWithin(S)

if |S| = 1 then
return

end if
S = S1] S2 such that |S1| = |S2| and] is a disjoint union
DeleteWithin(S1)
Update N(S, S)
DeleteWithin(S2)
Update N(S, S)
DeleteAcross (S1, S2)

Algorithm 4 DeleteAcross(R,S)

if |R| = |S| = 1 then
R = {r} and S = {s}
if Ar,s = 0 then

return
else if det(A|ar,s=0) 6= 0 then

ar,s = as,r = 0
Update N [{r, s}, {r, s}]

end if
else

R = R1]R2 and S = S1] S2 such that |R1| = |R2| = |S1| = |S2|
for i, j ∈ {1, 2} do

DeleteAcross(Ri, Sj)
Update N [R ∪ S, R ∪ S]

end for
end if

11-4

Algorithm 2 does not update N all at once, instead, it only updates the parts of N that
are needed in each recursive call. DeleteAcross(R,S) updates N [R ∪ S, R ∪ S] after each
recursive call to DeleteAcross(Ri, Sj). Hence N [R ∪ S, R ∪ S] = A−1[R ∪ S, R ∪ S] after
DeleteAcross(R,S). Similarly, DeleteWithin(S) updates N [S, S] after each recursive call to
DeleteWithin(Si). Therefore, whenever an edge, e = (r, s), is deleted Algorithm 2 updates
N to maintain Nr,s = A−1

r,s in each recursive call. Hence, correctness of the algorithm follows.
Let A|ae=0 = A′. To UpdateN [S, S] after call to DeleteWithin(S1), N(S, S) is set to (by

Fact 3)

NS,S −NS,S1 · (I + (A′
S1,S1

− AS1,S1) ·NS1,S1)
−1 · (A′

S1,S1
− AS1,S1) ·NS1,S

Similarly after recursively calling DeleteAcross(Ri, Sj), UpdateN [R ∪ S, R ∪ S] is done as
follows.

NR∪S,R∪S = NR∪S,R∪S −NR∪S,Ri∪Sj
· (I +4 ·NRi∪Sj ,Ri∪Sj

)−1 · 4 ·NRi∪Sj ,R∪S

where 4 = A′
Ri∪Sj ,Ri∪Sj

−ARi∪Sj ,Ri∪Sj
. Both these updates involve matrix multiplication and

computing inverse of matrices of size at most |S| × |S|. So, the time taken in each update is
O(|S|ω).

Runtime: Let g(n) denote the time taken by DeleteAcross(R,S), where |R| = |S| = n.
Then,

g(n) = 4[g(n/2) + (2n)ω]

= 4 · g(n/2) + O(nω) = O(nω)

Let f(n) denote the time taken by DeleteWithin(S), where |S| = n. Then,

f(n) = 2[f(n/2) + nω] + g(n/2)

= 2 · f(n/2) + g(n/2) + O(nω) = O(nω)

So, the total time required by Algorithm 2 is 2nω + O(nω) ≈ O(nω) and the probability
of error is as before.

2 Randomized maximum matching Algorithm

If a graph does not have a perfect matching then Algorithm 2 rejects. But we can use
Algorithm 2 to obtain a monte carlo algorithm for maximum matching as follows.

The correctness of Algorithm 5 follows, since a perfect matching in the reduced graph on
full rank principal submatrix is a maximum matching in the original graph. The total time
taken by Algorithm 5 is 2nω + O(nω) ≈ O(nω). The probability of error is as before.

11-5

Algorithm 5 Randomized maximum matching algorithm

Randomly instantiate Tutte′s Matrix T to get A
Find the rank of A
Find the maximum rank principal submatrix of A
Use Algorithm 2 to find perfect matching, M , in the reduced graph on full rank principal
submatrix
Output M .

3 Monte Carlo to Las Vegas

To make Algorithm 5 a Las Vegas algorithm we have to test if the output is indeed a
maximum matching. One way is to compute Gallai-Edmonds decomposition, that is, D(G),
A(G) and C(G), where A(G) is a witness set and then use the notion of witness set to show
that the matching is indeed maximum.

• D(G) = {u|u is not critical }

• A(G) = {u|u /∈ D(G) but u has a neighbour in D(G)}

• C(G) = V \ (A(G) ∪D(G))

Consider graph Gu obtained from G by adding a new vertex u′ adjacent only to u in G.
Now, u is not critical iff (maximum matching in Gu = maximum matching in G + 1). So,

u ∈ D(G) ⇔ maximum matching in Gu = maximum matching in G + 1

For each v ∈ V , find whether v is critical. If not then put v in D(G). At the end we
have computed D(G). To compute A(G), the time required is O(n + m). So, the time
required to check whether the output of Algorithm 5 is indeed a maximum matching is
n · nω + O(n + m) ≈ O(nω+1). With constant probability we succeed to compute Gallai-
Edmonds decomposition. Hence the expected running time of the algorithm is O(nω+1).
This can be brought down to O(nω) using algebraic techniques.

11-6

