Matchings in Graphs

Lecturer: Rajesh Chitnis Meeting: 10
Scribe: Meena Mahajan 25 March

Today we consider a variant of the classical stable matching problem. This variant is
called the popular matching problem (see [AIKMO07, KN09]), which is a bit ironic since it
is relatively less well-known! It was first formulated in 1975, and after a long period of no
progress, the first polynomial time algorithm was given in 2005 in [ATKMO7].

The setting is as follows: There is a set A = {ay,...,a,} of applicants, and a set P =
{p1,p2,...,p:} of posts. For each a € A, there is a non-empty subset List(a) C P of posts
a is willing to take up, with a preference order on List(a) allowing ties. We construct the
set F of edges (a,p) where p € List(a). Rank-1 edges are edges from some a to a top-choice
of a; rank-1 edges are edges from some a to second-choice posts of a and so on. Let r be
the maximum depth of the preference order. Then E can be partitioned into E1, Es, ..., E,
where F; consists of rank-i edges.

Let M be a matching. For u € AU P, we say that u € M if u is matched in M. If
u € M, we denote by M (u) the vertex matched to u in M.

Let M, M’ be matchings in G. Agent a prefers M’ over M if

e aZ M andae M, or
e ac M,ae M, and a prefers M'(a) to M(a).

We say that M’ is more popular than M, denoted M’ >, M, if the number of agents
preferring M’ to M exceeds the number of agents preferring M to M’.

A matching M* is said to be popular if there is no M such that M >, M*.

Note that it is not at all clear why a popular matching must exist. And with good reason
— there are indeed graphs where there is no popular matching. This happens because the
>pop relation is not acyclic.

Example 1 Suppose there are three agents and three posts, and all three have preference
p1 > pe > p3. Consider the matchings of size 3:

X =< XD
M, M, M My M M

Then M5 > pop My > pop M, > pop Mg, and Mg > pop M; > pop My > pop M. Thus there is no
popular matching of size 3.

We want to address the following questions:

1. Decide if there is a popular matching,

10-1

2. If yes, find one.
3. If yes, find one of maximum size.

The first question is simpler to tackle if we consider only matchings where all applicants are
matched, that is, A-perfect matchings. But there may not be such a matching that is also
popular. The following result however shows that we can reduce the general problem to the
special case.

Lemma 2 Popular matchings reduces to instances where if there is a popular matching,
there is an A-perfect matching.

Proof: Let G = (AU P, E) be an instance of popular matchings, with lists L(a) for a € A.
Introduce n new last-resort posts, one per applicant; call these posts [(a) for a € A. Augment
the list List(a) of each applicant a with [(a), placed at the end of the list. Note that I(a)
appears only in List(a) and in no other list. Call this instance H.

The following map from matchings in G to A-perfect matchings in H is a bijection: For
matching M in G, define M’ = M U {(a,l(a) | a € M}. It is easy to see that M is popular
in GG if and only if M’ is popular in H.

Thus, G has a popular matching if and only if H has an A-perfect popular matching.
This is the desired reduction. []

Henceforth, without loss of generality, we assume that we are looking for A-perfect pop-
ular matchings. We also assume that for each a, there is a reserved last-resort post [(a).

Addressing question 1 above, we first consider the easy case when there are no ties; each
applicant has a total order on the elements of List(a). This means that in each of the graphs
G; = (AU P, E;), each a is either isolated or pendant.

Definition 3 1. For each a € A, let f(a) denote the unique first post in List(a).

2. A postp € P is called an f-post if it is some applicant’s first choice; p = f(a) for some
a€ A

3. If p is an f-post, let f(p) denote the set of applicants for whom it is the first choice;
fp)={a € Al f(a)=p}.

Lemma 4 [n every popular matching, no f-post is unmatched, and all f-posts are matched
to applicants for whom they are first choice. That is, if M is popular and p is an f-post,
then p € M and M(p) € f(p).

Proof: Let M be a popular matching and let p be an f-post.

If p ¢ M, then pick any a such that f(a) = p. If a € M, then let M’ = M U {(a,p)}.
Otherwise, let M' = M \ {(a, M(a))} U{(a,p)}. Then a prefers M’ to M, and all other
applicants are indifferent between M’ and M. So M’ >,., M, contradicting the claim that
M is popular. So every f-post p must be matched in M.

10-2

If M(p) & f(p), pick any a; € f(p). Let a = M(p). By a M)
assumption, p # f(ag) = p', say. Since p’ is an f-post, as

shown above, it is matched in M. Let a3 = M(p'). Now M(p)=a, P
construct M’ by promoting a; to her first choice p, promoting i
as to her first choice p/, and demoting ag to [(a3). See the B~ fa) =p
figure alongside; solid lines represent edges in M, dashed lines el)

represent edges in M’. (Note, M(a;) may not even exist.)
Clearly, a; and asy prefer M’ to M since they now get their first choices, while only as prefers
M to M'. So M’ >, M, contradicting the claim that M is popular.

|

Definition 5 For each a € A, let s(a) denote the first post in List(a) that is not an f-post.

Note that s(a) need not be a’s second choice; it can be far down the list in List(a). However,
it is always defined, because [(a) is not an f-post.

The following lemma says that each applicant either gets her first-choice post, or the first
post in her list that is not anyone else’s first-choice post.

Lemma 6 In any popular matching M, for all a € A, M(a) € {f(a),s(a)}.
Proof: Let M be a popular matching, and let a be an arbitrary applicant with M (a) = p.

Case 1: p lies above s(a) in the preference order of a. Since p is above s(a), p is the first-
choice post for at least one applicant. By Lemma 4, M(p) € f(p). Since a = M(p),
we have p = f(a).

Case 2: p lies below s(a) in the preference order of a.

If s(a) € M, then promoting a to s(a) gives a match- a _ M(a)=p
ing more popular than M. Otherwise, let a1 = a

and ay = M (s(a)). By definition of s(a), it is not M(s(a))=a, — = s(a)
the first-choice post of any applicant; in particular,

s(a) # f(ag). If f(az) = p, then by Lemma 4, B f(a)

a = M(p) has p as first choice; that is, f(a) = p. T iy
Since this is not the case, we conclude that f(ay) # p.
Thus p, s(a), and f(asz) are all distinct. Again by Lemma 4, we know that f(as) € M;
let a3 = M(f(as)). Promoting a; to s(a) and as to f(as), and demoting az to [(a3),
gives a matching more popular than M. See figure alongside. Either way, we contradict
the popularity of M.

Since a was chosen arbitrarily, the result holds for all applicants. [|

We now obtain a nice characterization of popular matchings, that will be used in the
decision algorithm.

10-3

Theorem 7 A matching M is popular if and only if it satisfies the following conditions:
1. every f-post is matched in M, and
2. for every a € A, M(a) € {f(a),s(a)}.

Proof: =-: This follows directly from Lemma 4 and Lemma 6.

<: Let M be a matching satisfying the given conditions, and assume to the contrary
that M is not a popular matching. So there is a matching M’ such that M’ >,,, M. Let
A; be the set of applicants who prefer M’ to M, let A, the set of applicants who prefer M
over M’, and let Az be the rest. By definition of >, |A1| > |A,].

We will construct an injective map from A; to Ay, hence concluding that |A;| < |As| and
obtaining a contradiction. Pick any a € A;. Clearly, M(a) # f(a), because if it were, then
a would not prefer any matching over M. So by the given conditions, M (a) = s(a). Since a
prefers M’ over M, clearly p = M'(a) is higher than s(a) in List(a). By definition of s(a),
p is some applicant’s first-choice and so an f-post. So by the given conditions, p € M. Let
M (p) = a'. By the given conditions, either p = f(a’) or p = s(a’). But p is an f-post, and
so it cannot be s(a”) for any a”. So p = f(a’). We map a to a’. Clearly, a’ prefers M, where
she gets her first choice, to M’, where she gets something less preferred, and so a’ € As.

To see why this map is injective, note that there is an M’ — M alternating path of length
2 from a to a’: a —pp p — a'. 1f some other a” were also mapped to a’, there would be a
similar alternating path a” —), p —r @/, implying that M’ matches p to both a and a”, a
contradiction. [|

Decision Algorithms

This characterization is crucial in obtaining an efficient algorithm. Using this, we can throw
away from G all edges except those connecting an applicant a to f(a) or s(a), getting a very
sparse graph. This gives an extremely simple algorithm for the decision question:

1: Input: An instance G' = (AU P’ E), {L(a)}4.ca of popular matchings.

2: Add last-resort posts to get instance G.

3: Find f(a) for all a € A.

4: Find s(a) for all a € A.

5: Construct reduced instance H = (AU Py, Ey) where Ey = {(a, f(a)), (a,s(a)) | a € A}.

6: if H has an A-perfect matching then

7. Return Yes

8: else

9: Return No
10: end if

The correctness of this algorithm follows from Theorem 7: If H has an A-perfect matching
M, then it has an A-perfect matching M’ where every f-post is matched: simply pick, for
each un-matched post p, any a € f(p), and promote a to p.

10-4

Steps 2-5 require time O(n +t 4+ m) where m is the number of edges in G’ (the total size
of all the lists). The time requirement is dominated by step 6: checking whether H has an
A-perfect matching. Using the best bipartite algorithm for maximum matching, we get a
time bound of O(y/(n + |Py|)|Exl). Since there are 2n edges in H, this is O(ny/n).

This time can be improved by a simple trick. In H, perform the following as long as
possible:

1. If there is a degree-0 post, delete it.

2. If there is a degree-1 post p adjacent to a, then add (a,p) to the matching and delete
both a and p.

Note: as a result of step 2 above, another degree-2 post could now become degree-1, or
another degree-1 post could now become degree-0. So we ahve to repeat as long as possible.
However, throughout this, each applicant a continues to have degree exactly 2; we never
remove a neighbouring post p unless we match up a and p and remove a as well. Thus, when
this ends, let the resulting graph be H' = (A" U Py, EY;). It is easy to see that H has an
A-perfect matching if and only H' has an A’-perfect matching. In H’, each post p has degree
at least 2, while each applicant a has degree exactly 2. By Hall’s Theorem, if |A'| > | P},
then H' has no A’-perfect matching. Otherwise, |Py| < |A'| = 537 deg(p) > [Py, and so
|Pi;| = |A|. So every vertex has degree exactly two, and the graph decomposes into disjoint
even cycles; hence it has a perfect matching.

To summarize, H' has an A’-perfect matching if and only if |A’| < |P}|.

Obtaining H’ from H requires time O(n + |Py| + |Ex|) € O(n). Thus the overall time
for the decision algorithm is O(n + m).

Search Algorithm

To find a popular algorithm, we can modify the decision algorithms above. Construct H and
find a maximum matching M in H. If M is A-perfect, then let M’ be the matching obtained
by doing necessary promotions to match all f-posts. Now, delete from M’ all last-resort
matching edges; the resulting matching is the popular algorithm.

Time requirement: M can be obtained in O(ny/n) time by an implementation of Ed-
monds’s algorithm. Using the cleverer trick above, we can prune H to H'. If |Pj| = |A'],
then finding the perfect matching in H' is trivial in time O(n) because H' has disjoint even
cycles. So the overall time requirement, even to find a popular matching if one exists, is just
O(n+m).

Maximum size popular matchings

The next question we want to address is to find a popular matching of maximum

10-5

size. There can be pop-
ular matchings of different
sizes; in the figure along-
side, there are four match-
ings, and the dashed lines
indicate >,,,. The match-

ings {(a,p), (b,q)} and {(b, p)}
are both popular. And the

algorithms we have described above may well find the smaller one. So we need a new trick.
Here is the strategy.

Let A; be the set of applicants for whome s(a) is the last-resort post. These applicants will
either get their first choice or will be left unmatched. Let As be the rest.

Ay ={a€cAls(a)=1(a)}; Ay=A\A.

We want a popular matching in G’, that is, an A-perfect matching in G or in H that
minimizes the number of a in A; matched to s(a). We do this as follows.

e e e e e
AR S i

16:

Input: An instance G' = (AU P', E), {L(a)}4ca of popular matchings.
Add last-resort posts to get instance G.
Find f(a) for all a € A.
Find s(a) for all a € A.
Construct reduced instance H = (AU Py, Ey) where Ey = {(a, f(a)), (a,s(a)) | a € A}.
if H has no matching saturating A, then
Return No
else
Find such a matching M.
Delete all (a,l(a)) edges from H. (This leaves M untouched.)
while M is not maximum do
Augment M; this will match one more A; applicant.
end while
Match all f-posts by appropriate promotions.
: end if
Return M.

To implement this algorithm efficiently, let us con-

sider the most costly step: augment (step 12). The

p graph has a special structure: from an a € A, there
is a unique alternating path @, since nodes in A, have
degree exactly 2. This alternating path is augmenting

if and only if it ends in P. The crucial insight we uses

is the following claim; proof is left as an easy exercise.

10-6

Claim 8 No future augmenting path will contain an edge from Q, (whether or not Q, is
augmenting).

Hence it suffices to consider the vertices of A; in any fixed order; replace steps 11-13 above
by the steps below.
for a € A; do
if), is augmenting then
Augment M along Q,.
end if
end for

Allowing ties

So far, we have only considered the case when there are no ties. If applicants can have ties
in their lists, then more work is required, which we will not discuss here. We can still obtain
polynimial-time (O(m+/n) time) algorithms, using the Gallai-Edmonds decomposition.

Optimal popular matchings

Finally, we can also consider the question of finding a popular matching that is optimal by
some criterion other than size. Possible criteria are: maximise the number of rank-1 edges,
or, minimise the number of low-ranked edges, or, produce a most fair matching etc etc.
Various such versions are known to have polynomial time algorithms.

References

[ATKMO07] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn.
Popular matchings. SIAM Journal on Computing, 37(4):1030-1045, 2007. pre-
liminary version in SODA 2005.

[KN09] Telikepalli Kavitha and Meghana Nasre. Optimal popular matchings. Discrete
Applied Mathematics, 157(14):3181 — 3186, 2009.

10-7

