
Matchings in Graphs

Lecturer: Meena Mahajan
Scribe: Rajesh Chitnis

Meeting: 1
6th January 2010

Most of the material in this lecture is taken from the book “Fast Parallel Algorithms for
Graph Matching Problems” by Karpinski-Rytter

We will only be considering simple undirected finite graphs unless stated otherwise.
Graphs will be denoted as G = (V,E)

1 Some preliminary definitions

Definition 1 Let G = (V,E) be a graph. M ⊆ E is called as a matching of G if ∀ v ∈ V
we have | {e ∈M : v is incident on e ∈ E} | ≤ 1.

Definition 2 A matching M of G is said to be maximal if ∀ e ∈ E \M the set of edges
given by M ∪ {e} is not a matching of G

Definition 3 The size of a matching M of G is the number of the edges it contains and is
denoted by |M |.

Definition 4 A matching M of G is said to be maximum if ∀ matching M ′ of G we have
|M |≥|M ′ |. A maximum matching is always maximal but not vice-versa.

Definition 5 Let M be matching of G. A vertex v ∈ V is said to be M-saturated if M
contains an edge incident on v. Otherwise v is said to be M-unsaturated

Definition 6 A matching M of G is said to be perfect if all vertices of G are M-saturated.
A graph with an odd number of vertices can never admit a perfect matching.

Definition 7 A matching M of G is said to be near-perfect if exactly one vertex of G
is M-unsaturated. A graph with an even number of vertices can never admit a near-perfect
matching.

Definition 8 Let A ⊆ V . A matching M of G is said to be A-perfect if each vertex in A
is M-saturated. A perfect matching is a V−perfect matching.

1-1

2 Some Remarks

Remark 9 We will later look at weighted graphs i.e graphs with a weight function w : E →
R+ ∪ {0}. There we will be interested in finding matchings of maximum weight where the
weight of a matching is the sum of weights of edges which are in the matching.

Remark 10 We will consider three types of problems

• Decision - Does G have a matching of size ≥ k ?

• Search - Find a matching in G of size ≥ k

• Counting - How many matchings of G have size ≥ k

3 Augmenting Paths

Definition 11 A path P in G is said to be M-alternating if the edges of P alternate wrt
membership in M .

Definition 12 A path P in G is said to be M-augmenting if P is a maximal M-alternating
path starting and ending at vertices which are M-unsaturated. Clearly, every M-augmenting
path must have odd length.

Lemma 13 Let G be a graph whose maximum degree is atmost 2. Then every component
of G is either an isolated point, a path or a cycle.

Proof: Consider any non-isolated vertex v of G. Its atmost two neighbours further have
degree atmost 2 and so on. So the component of G containing v is either a path or a cycle.
This holds true for all non-isolated vertices of G and hence we are done.

Lemma 14 (Berge 1957) A matching M is maximum iff G has no M-augmenting path.

Proof: Suppose M is maximum and there exists a M -augmenting path P . Consider the
symmetric difference M ⊕ P (edges which are present in exactly one of M or P). Since P
is an M -augmenting path, M ⊕ P is also a matching of G and |M ⊕ P | = |M |+ 1.

Suppose G has no M -augmenting path and M is not maximum. Let M ′ be a maximum
matching and so we have |M ′| > |M |. Consider M ⊕M ′. Each vertex has degree atmost
2 in M ⊕M ′ as each of M and M ′ can contribute atmost 1 each to degree of each vertex
in M ⊕M ′. By Lemma 13, M ⊕M ′ consists of cycles and paths and isolated vertices. But
edges of M ⊕M ′ are alternate in belonging exclusively to M and M ′. Hence each cycle must
be even. So M ′ can score over M in size only from the paths. So, there exists atleast one
path in M ⊕M ′ which has more number of edges from M ′ than from M . But such a path
is M -augmenting which gives a contradiction.

1-2

Corollary 15 (Hopcroft-Karp) Let M∗ be a matching of G. Then for any matching M of
G such that |M∗| ≥ |M | , we have |M∗| − |M | vertex-disjoint M-augmenting paths

Proof: Refer to proof of Lemma 14. Every cycle of M ⊕M∗ is even and every path of
M ⊕M∗ which is not M -augmenting must have equal number of edges from M and M∗

as M∗ is maximum. Also note that each M -augmenting path has exactly one edge more
from M∗ than from M . So we need |M∗| − |M | such paths which are all vertex-disjoint as
we defined (see Definition 12) augmenting paths as maximal paths starting and ending at
unsaturated points.

Corollary 16 Let M∗ be a maximum matching and M be any matching. If M is not
maximum, then the shortest M-augmenting path has length ≤ |V |

|M∗|−|M | − 1

Proof: From Corollary 15 we know that there are |M∗|−|M | vertex(and hence edge)-disjoint

M -augmenting paths. By Pigeonhole Principle, one of the paths must have atmost |V |
|M∗|−|M |

vertices and thus has length atmost ≤ |V |
|M∗|−|M | − 1

4 Algorithm for finding maximum matching using aug-

menting paths

Consider the following algorithm whose correctness follows immediately from Lemma 14

1. M = ∅

2. while there is an M -augmenting path P
do M ←M ⊕ P

3. return M

5 An O(n3) algorithm for finding maximum matching

in bipartite graphs

Let G = (A ∪ B,E) be a bipartite graph and let M be a matching of G. We want to find
a maximum matching of G. Denote by A0, B0 the sets of M -unsaturated vertices in A,B
respectively. We consider a new directed graph H on the vertex set A ∪ B and edge set E.
Edges which are in M are directed A→ B and edges not in M are directed B → A.

Claim 17 G has a M-augmenting path iff H has a path from B0 to A0.

1-3

Proof: Suppose G has a M -augmenting path say from u ∈ A0 to v ∈ B0. The same path
directed from v to u is clearly a path in H from B0 to A0.
Suppose H has a path from b ∈ B0 to a ∈ A0. The underlying undirected path from a to b
is clearly a M -augmenting path.

So we do DFS from B0 and stop as soon as we reach some vertex in A0 thus giving us
a M -augmenting path P . Augment the M -augmenting path and repeat same process wrt
new matching M ⊕ P . If we ever do not reach any vertex of A0, then we can conclude from
Claim 17 that G has no M -augmenting path i.e. M is maximum.

Let us now analyse the time complexity of our algorithm. Denote |V | = n and |E| = m.

1. Given an augmenting path we can augment it easily in O(m) time.

2. Assume |B| ≤ |A| as otherwise we could have just swapped roles of A and B in our
algorithm. Thus |B0| ≤ |B| ≤ n

2
. Also at each stage of our algorithm by augmenting,

we saturate a previously-unsaturated vertex from B without doing anything to the
vertices which are already saturated. So we need atmost |B0| ≤ n

2
stages.

3. At each stage the maximum number of times we need to do DFS is |B0| as in the
worst-case only the last vertex from B0 we apply DFS to may lead to a path in A0.
Recollect that a single DFS can be done in O(n+m) time.

Thus the Total Time taken by algorithm is ≤ n

2

[
O(m) + |B0| ∗O(n+m)

]
. However now we

use a trick to shave off the |B0| factor. Add a super-vertex β and draw edges directed from
β to every point in B0. Thus we need to apply DFS only once viz. for vertex β. Thus the

time complexity becomes O
(n

2
[m + (n + m)]

)
= O

(
n2 + nm

)
. Since a bipartite graph on

n vertices can contain atmost (n2

4
) edges the time complexity of our algorithm is O(n3)

6 Hopcroft-Karp Algorithm for finding a maximum

matching in bipartite graphs in O(n2.5) time

In the algorithm given in the previous section we looked for a single augmenting path at
a time and augmented it. Instead we will now find a maximal family of vertex-disjoint
shortest-length augmenting paths and augment all of them together in a single step. This
improvement will help us to bring the time complexity down to O(n2.5).

Consider the following algorithm

1. M = ∅

1-4

2. while there is an M -augmenting path, find a maximal family F of vertex-disjoint
shortest M -augmenting paths
do M ←M ⊕F

3. return M

The correctness of the algorithm follows from Lemma 14

Lemma 18 Let M be a matching of G and let P be a M-augmenting path of shortest length.
Let P ′ be a (M ⊕ P)-augmenting path. Then |P ′| ≥ |P |+ |P ∩ P ′|

Proof: Consider N = (M ⊕ P) ⊕ P ′. Then N is clearly a matching and |N | = |M | + 2.
Thus by Corollary 15 M ⊕N contains 2 vertex-disjoint M -augmenting paths say P1 and P2.
Note that M ⊕ N = P ⊕ P ′ and thus we have |P ⊕ P ′| ≥ |P1| + |P2|. But P1, P2 are both
M -augmenting paths and P is shortest M -augmenting path. Therefore |P ⊕ P ′| ≥ 2|P |.
However |P ⊕ P ′| = |P |+ |P ′| − |P ∩ P ′| and so the desired inequality follows.

Lemma 19 Let M0 = ∅ and M1 be a matching of G. Consider the sequence M0,M1,M2,M3, ...
where Pi is shortest Mi-augmenting path and Mi+1 = Mi⊕Pi ∀i. Then |Pi| ≤ |Pj| for i < j
and |Pi| = |Pj| implies Pi and Pj are vertex-disjoint.

Proof: Suppose that |Pi| = |Pj| for some i < j and Pi and Pj are not vertex-disjoint. Then
there exist some k, l such that i ≤ k < l ≤ j and Pk and Pl are not vertex-disjoint and further
for all m between l and k we have Pm is vertex-disjoint from both Pk and Pl. Therefore Pl

is a (Mk+1)-augmenting path and so by Lemma 18 we have |Pl| ≥ |Pk|+ |Pl ∩ Pk|. However
we are given that |Pl| = |Pk| which implies that |Pl ∩Pk| = 0 i.e. Pl and Pk have no edges in
common. However since Pl and Pk are not vertex-disjoint, they have a common vertex say x
and then they must have in common the edge from Mk ⊕ Pk which is incident on x leading
to a contradiction.

Lemma 20 Let F be maximal (wrt inclusion) family of vertex-disjoint shortest M-augmenting
paths. Let their common length be l1. Let l2 be length of shortest (M ⊕F)-augmenting path.
Then l2 ≥ l1 + 2

Proof: Let F = {P1, P2, .., Pr}. Let P ′ be a shortest (M ⊕F)-augmenting path. Note that
M ⊕ F = (..(M ⊕ P1) ⊕ P2)..) ⊕ Pr. Suppose P ′ is disjoint from each element of F . Then
P ′ is also a M -augmenting path and thus l2 ≥ l1. If we however have l1 = l2 then we could
have added P ′ to F thus contradicting its maximality. So, let us assume P ′ has a vertex in
common with atleast one path in F . By Lemma 19 we have l2 > l1. Finally note that l1, l2
are both lengths of augmenting paths and hence must both be odd.

1-5

Let us look at the graph H considered at beginning of Section 5. Let |A ∪ B| = n and
|E| = m. Note that Claim 17 holds.

Lemma 21 The algorithm described at start of Section 6 makes atmost 2
√
n iterations

Proof: Let M∗ be a maximum matching and let M be matching after
√
n iterations. By

Lemma 20 length of shortest augmenting path ≥ (2
√
n− 1) ≥

√
n. By Corollary 16 we have√

n ≤ (length of shortest M -augmenting path)≤ n
|M∗|−|M | and so |M∗| − |M | ≤

√
n. From

this point onwards even if we augment just one path in each iteration we can finish in 2
√
n

iterations as each augmenatation increases size of matching by 1.

Lemma 22 Each iteration of the algorithm can be implemented in O(m) time.

Proof: First we will use BFS to find the length k of shortest path from B0 to A0 and to
produce the sequence of disjoint layers B0 = L0, L1, L2, ..., Lk ⊆ A0 where for all 0 ≤ i < k
the set of vertices at distance i from B0 and Lk is the subset of A0 which is at distance k
from B0. Add a super-vertex β and draw edges from it to all vertices of B0. Start a BFS
from β to get distance of β from A0. Subtract one to get length of shortest path from B0 to
A0. This takes O(m) time.
Now consider a modified DFS which starts at a vertex v ∈ B0 and stops as soon as it reaches
a vertex say w in Lk and outputs this v → w path. Add this M -augmenting path to F and
delete all vertices visited in the modified DFS. (Let x be a vertex seen at some Lj in DFS
started from v ∈ B0. If x is not on a M -augmenting path of length k starting at v then x
cannot be on any M -augmenting path of length k and so we can delete all vertices visited in
modified DFS which began at v). Redo the whole procedure now starting at another vertex
in B0. This clearly gives us a maximal family of vertex-disjoint shortest-length augmenting
paths. Let mi be the number of edges visited in the ithDFS which takes O(mi) time. Noting
that m ≥

∑
imi the time taken is O(m)

Theorem 23 The algorithm runs in O(n2.5) time.

Proof: From Lemma 22 we know that each phase can be implemented in O(m) time. Also
from Lemma 21 we know that there are atmost 2

√
n iterations. Thus time taken by our

algorithm is O(
√
n) ∗O(m) = O(n2.5)

1-6

