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Abstract

This paper is a self-contained introduction to the theory of finite-state automata

on infinite words. The study of automata on infinite inputs was initiated by Büchi

in order to settle certain decision problems arising in logic. Subsequently, there

has been a lot of fundamental work in this area, resulting in a rich and elegant

mathematical theory. In recent years, there has been renewed interest in these

automata because of the fundamental role they play in the automatic verification

of finite-state systems.



Introduction

Büchi initiated the study of finite-state automata working on infinite inputs in [Bü60]. He
was interested in showing that the monadic second order logic of infinite sequences (S1S)
was decidable. Büchi discovered a deep and elegant connection between sets of models of
formulas in this logic and ω-regular languages, the class of languages over infinite words
accepted by finite-state automata.

A few years later, Muller independently proposed an alternative definition of finite-
state automata on infinite inputs [Mu63]. His work was motivated by questions in switch-
ing theory.

The theory of ω-regular languages and automata on infinite words is substantially more
complex than the corresponding theory for finite words. This was evident from Büchi’s
initial work, where he showed that non-deterministic automata over infinite inputs are
strictly more powerful than deterministic automata. This means that basic constructions
like complementation are correspondingly more intricate for this class of automata.

During the 1960’s, fundamental contributions were made to this area. McNaughton
proved that with Muller’s definition, deterministic automata suffice for recognizing all
ω-regular languages [Mc66]. Later, Rabin extended Büchi’s decidability result for S1S to
the monadic second order of the infinite binary tree (S2S) [Ra69]. The logical theory S2S
is extremely expressive and Rabin’s theorem can be used to settle a number of decision
problems in logic.

Despite this strong connection between automata on infinite inputs and the decid-
ability of logical theories, there was a lull in the area during the 1970’s. One reason for
this was Meyer’s negative result about the complexity of the automata-theoretic decision
procedure for S1S and S2S [Me75]—he showed that, in the worst case, the automata that
one constructs would be hopelessly large and impossible to use in practice.

During the past decade or so, however, there has been renewed interest in apply-
ing automata on infinite words to solve problems in logic. To a large extent, this is
a consequence of the development of temporal logic as a formalism for specifying and
verifying properties of programs [Em90, Pn77]. It turns out that automata on infinite
words (and trees) can be directly applied to settle important questions in temporal logic,
without invoking S1S and S2S. In conjunction with these new applications, there has
been greater emphasis on evaluating the complexity of different constructions on these
automata [Sa88, SV89, SVW87, VW94].

In this tutorial, we present a self-contained introduction to the theory of finite-state
automata on infinite words. We begin with some preliminaries on the notation we will
use in the paper. In Section 1, we introduce Büchi automata and ω-regular languages
and prove some basic results. The next section describes in detail the connection between
ω-regular languages and formulas of S1S. In Section 3, we look at stronger definitions of
automata, proposed by Muller, Rabin and Streett. The last technical section, Section 4,
describes in detail a determinization construction for Büchi automata. We conclude with
a quick summary of various aspects of the theory which could not discussed in the paper.

For a more detailed introduction to the area, the reader is encouraged to consult the
excellent survey by Thomas [Th90]. This tutorial—especially Sections 1 and 2—draws
heavily on the material presented in [Th90].
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Notation

Throughout this paper, Σ denotes a finite set of symbols called an alphabet. A word is a
sequence of symbols from Σ. The set Σ∗ denotes the set of finite words over Σ while the
set Σω is the set of infinite words over Σ. A language is a set of words. Every language
we consider either consists exclusively of finite words or exclusively of infinite words.

Typically, elements of Σ will be denoted a, b, c, . . . , finite words will be denoted
u, v, w, . . . , and infinite words will be denoted α, β, . . . . We use U, V, . . . to denote lan-
guages of finite words—that is, subsets of Σ∗. L will be reserved for languages consisting
exclusively of infinite words.

An infinite word α ∈ Σω is an infinite sequence of symbols from Σ. We shall represent
α as a function α : N0 → Σ, where N0 is the set {0, 1, 2, . . .} of natural numbers. Thus,
α(i) denotes the letter occurring at the ith position. For natural numbers m and n, m ≤ n,
α[m..n] denotes the finite word α(m)α(m+1) · · ·α(n−1)α(n) occurring between positions
m and n.

In general, if S is a set and σ an infinite sequence of symbols over S—in other words,
σ : N0 → S—then inf(σ) denotes the set of symbols from S which occur infinitely often
in σ. Formally, inf(σ) = {s ∈ S | ∃ωn ∈ N0 : σ(n) = s}, where ∃ω denotes the quantifier
“there exist infinitely many”.

We shall assume some degree of familiarity with standard results from the theory of
regular languages over finite words.

1 Büchi automata

A Büchi automaton is a non-deterministic finite-state automaton which takes infinite
words as input. A word is accepted if the automaton goes through some designated
“good” states infinitely often while reading it.

Automata An automaton is a triple A = (S,→, Sin) where S is a set of states, Sin ⊆ S
is a set of initial states and → ⊆ S×Σ×S is a transition relation. Normally, we write
s

a
−→ s′ to denote that (s, a, s′) ∈ →.

The automaton is said to be deterministic if Sin is a singleton and → is a function
from S × Σ to S.

We could have weakened the condition for deterministic automata by permitting → to
be a partial function from S×Σ to S. The present definition demands that at each state
there is precisely one outgoing transition for each letter of the input alphabet. The weaker
definition would relax this to say that there is at most one outgoing transition per letter.
A “weak” deterministic automaton can always be converted to a “strong” deterministic
automaton by adding a “dump” or “reject” state to take care of all missing transitions.
Since it is often convenient to assume that deterministic automata are “complete” and
never get stuck when reading their input, we shall stick to the stronger definition in this
paper.

If u is a finite non-empty word, we write s
u

−→+ s′ to denote the fact that there is a
sequence of transitions labelled by u leading from s to s′. In other words, if u = a1a2 · · ·am,
then s

u
−→+ s′ if there exist states s0, s1, . . . , sm such that s = s0

a1−→ s1
a2−→ · · ·

am−→ sm =
s′.
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Figure 1: A typical accepting run of a Büchi automaton, with s ∈ Sin and g ∈ G.

Runs Let A = (S,→, Sin) be an automaton and α : N0 → Σ an input word. A run
of A on α is a infinite sequence ρ : N0 → S such that ρ(0) ∈ Sin and for all i ∈ N0,

ρ(i)
α(i)
−→ ρ(i+1).

A run of A on the finite word w = a0a1 . . . am is a sequence of states s0s1 . . . sm+1 such

that s0 ∈ Sin and for all i ∈ {0, 1, . . . , m}, s1
α(i)
−→ si+1.

So, a run is just a “legal” sequence of states that an automaton can pass through
while reading the input. In general, an input may admit many runs because of non-
determinism. Since a non-deterministic automaton may have states where there are no
outgoing transitions corresponding to certain input letters, it is also possible that an input
admits no runs—in this case, every potential run leads to a state from where there is no
outgoing transition enabled for the next input letter. If the automaton is deterministic,
each input admits precisely one run.

Automata on finite words A finite state automaton on finite words is a structure
(A, F ) with A = (S,→, Sin) and F ⊆ S. The automaton A accepts an input w =
a0a1 . . . am if w admits a run s0s1 . . . sm+1 such that sm+1 ∈ F . The language recognized
by (A, F ), L(A, F ), is the set of all finite words accepted by (A, F ).

Throughout this paper, we shall refer to languages recognized by finite state automata
on finite words as regular languages. In other words, a set U ⊆ Σ∗ is regular iff there is
an automaton (A, F ) such that U = L(A, F ).

Our goal is to study automata which recognize languages of infinite words. The first
definition of such automata was proposed by Büchi [Bü60].

Büchi automata A Büchi automaton is a pair (A, G) where A = (S,→, Sin) and G ⊆
S. G denotes a set of good states. The automaton (A, G) accepts an input α : N0 → Σ if
there is a run ρ of A on α such that inf(ρ) ∩G 6= ∅. The language recognized by (A, G),
L(A, G), is the set of all infinite words accepted by (A, G). A set L ⊆ Σω is said to be
Büchi-recognizable if there is a Büchi automaton (A, G) such that L = L(A, G).

According to the definition, a Büchi automaton accepts an input if there is a run along
which some subset of G occurs infinitely often. Since G is a finite set, it is easy to see
that there must actually be a state g ∈ G which occurs infinitely often along σ. In other
words, if we regard the state space of a Büchi automaton as a graph, an accepting run
traces an infinite path which starts at some state s in Sin, reaches a good state g ∈ G
and, thereafter, keeps looping back to g infinitely often (see Figure 1).
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Figure 2: A Büchi automaton for L (Example 1.1)
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Figure 3: A Büchi automaton for L (Example 1.1)

Example 1.1 Consider the alphabet Σ = {a, b}. Let L ⊆ Σω consist of all infinite
words α such that there are infinitely many occurrences of a in α. Figure 2 shows a Büchi
automaton recognizing L. The initial state is marked by a double arrow. There is only
one good state, which is indicated with a double circle. In this automaton, all transitions
labelled a lead into the good state and, conversely, all transitions coming into the good
state are labelled a. From this, it follows that the automaton accepts an infinite word iff
it has infinitely many occurrences of a.

The complement of L, which we denote L, is the set of all infinite words α such that α
has only finitely many occurrences of a. An automaton recognizing L is shown in Figure 3.
The automaton guesses a point in the input beyond which it will see no more a’s—such
a point must exist in any input with only a finite number of a’s. Once it has made this
guess, it can process only b’s—there is no transition labelled a from the second state—so
if it reads any more a’s it gets stuck.

2

In the example, notice that the automaton recognizing L is deterministic while the au-
tomaton for L is non-deterministic. We now show that the non-determinism in the second
case is unavoidable—that is, there is no deterministic automaton recognizing L. This
means that Büchi automata are fundamentally different from their counterparts on fi-
nite inputs: we know that over finite words, deterministic automata are as powerful as
non-deterministic automata.

Limit languages Let U ⊆ Σ∗ be a language of finite strings. The limit of U , lim(U) is
the set

{α ∈ Σω | ∃ωn ∈ N0 : α[0..n] ∈ U}.
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So, a word belongs to lim(U) iff it has infinitely many prefixes in U . We then have the
following characterization of languages recognized by deterministic Büchi automata.

Theorem 1.2 A language L ⊆ Σω is recognizable by a deterministic Büchi automaton iff
L is of the form lim(U) for some regular language U ⊆ Σ∗.

Proof Let U be a regular language. Then, there exists a deterministic finite state
automaton (DFA) of the form (A, F ) where A = (S,→, Sin) and F ⊆ S such that (A, F )
recognizes U . It is easy to see that if we interpret F as a set of good states, the Büchi
automaton (A, F ) accepts lim(U).

Conversely, let L be recognized by a deterministic Büchi automaton (A, G). Treat G
as a set of final states and let U be the language recognized by the DFA (A, G). Once
again, it is easy to see that L = lim(U). 2

We now show that the language L of Example 1.1 is not of the form lim(U) for any
language U . Recall that L is the set of all infinite words α over the alphabet Σ = {a, b}
such that α contains only finitely many occurrences of a.

Suppose that L = lim(U) for some U ⊆ Σ∗. Since bω ∈ L, there must be some finite
prefix bn1 ∈ U . Since, bn1abω ∈ L, we can then find a prefix bn1abn2 ∈ U . From the
fact that bn1abn2abω ∈ L, we obtain a prefix bn1abn2abn3 ∈ U . Proceeding in this way,
we get an infinite sequence of words {bn1 , bn1abn2 , bn1abn2abn3 , . . .} ⊆ U . From this it
follows that the infinite word β = bn1abn2abn3a · · ·abnia · · · belongs to lim(U). But β has
infinitely many occurrences of a, so it certainly does not belong to L, thus contradicting
the assumption that L = lim(U).

From this observation and Example 1.1, we deduce the following corollary.

Corollary 1.3 Non-deterministic Büchi automata are strictly more powerful than de-
terministic Büchi automata—there are languages recognized by non-deterministic Büchi
automata which cannot be recognized by any deterministic Büchi automaton.

1.1 Characterizing Büchi-recognizable languages

For finite words, we can characterize the class of languages recognized by non-deterministic
finite state automata in a number of ways—for instance, in terms of regular expressions, or
in terms of syntactic congruences. In the same spirit, we now describe a characterization
of Büchi-recognizable languages of infinite words. We first need to define the ω-iteration
of a set of finite words. Let U ⊆ Σ∗. Then

Uω = {α ∈ Σω | α = u0u1u2 · · · where ui ∈ U for all i ∈ N0}.

Also, we observe that if U is a language of finite words and L is a language of infinite
words, we can define the language UL of infinite words obtained by concatenating each
finite word in U with an infinite word from L. Formally, UL = {α | ∃u ∈ U : ∃β ∈ L :
α = uβ}.
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ω-regular languages A language L ⊆ Σω is said to be ω-regular if it is of the form
⋃

i∈{1,2,...,n}UiV
ω
i , where each Ui and Vi is a regular language of finite words.1

Theorem 1.4 A language is Büchi-recognizable iff it is ω-regular.

Proof
(⇒):
Let L be recognized by a Büchi automaton (A, G), where A = (S,→, Sin). We have
observed earlier that each infinite word α ∈ L admits an accepting run ρ which begins in
an initial state, reaches a good state g, and then loops back through g infinitely often. For
s, s′ ∈ S, let Vss′ = {w ∈ Σ∗ | s

w
−→+ s′} denote the set of finite words which can lead from

s to s′. It is easy to see that Vss′ is regular—to recognize this set, use the non-deterministic
automaton (S,→, {s}) with {s′} as the set of final states. From our observation about
accepting runs, it follows that we can write L(A, G) as

⋃

s∈Sin, g∈G VsgV
ω
gg.

(⇐):
It is not difficult to show that the set of Büchi-recognizable languages satisfies the following
closure properties:

(i) If U is regular, then Uω is Büchi-recognizable.

(ii) If U is regular and L is Büchi-recognizable then UL is Büchi recognizable.

(iii) If L1, L2, . . . , Ln are Büchi-recognizable, so is
⋃

i∈{1,2,...,n} Li.

From this, it follows that every language of the form
⋃

i∈{1,2,...,n}UiV
ω
i , where each Ui and

Vi is regular, is Büchi-recognizable. 2

1.2 Constructions on Büchi automata

It turns out that the class of Büchi-recognizable languages is closed under boolean op-
erations and projection. These operations will be crucially used when applying Büchi
automata to settle decision problems in logic.

Union To show closure under finite union (which we have already assumed when proving
the previous theorem!), let (A1, G1) and (A2, G2) be two Büchi automata. To construct
an automaton (A, G) such that L(A, G) = L(A1, G1) ∪ L(A2, G2), we take A to be the
disjoint union of A1 and A2. Since we are permitted to have a set of initial states in
A, we retain the initial states from both copies. If a run of A starts in an initial state
contributed by A1, it will never cross over into the state space contributed by A2 and
vice versa. Thus, we can set the good states of A to be the union of the good states
contributed by both components.

1Technically speaking, both regularity and ω-regularity are defined algebraically, in terms of homo-

morphisms from the given language to a finite monoid. However, we shall ignore this complication and

stick to a more simple definition of ω-regularity.
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Complementation Showing that Büchi-recognizable languages are closed under com-
plementation is highly non-trivial. One problem is that we cannot determinize Büchi
automata, as we have observed in Corollary 1.3. Even if we could work with deterministic
automata, the formulation of Büchi acceptance is not symmetric with respect to comple-
mentation in the following sense. Suppose (A, G) is a deterministic Büchi automaton and
α is an infinite word which does not belong to L(A, G). Then, the (unique) run ρ

α
of A

on α is such that inf(ρ
α
) ∩ G = ∅. Let G denote the complement of G. It follows that

inf(ρ
α
)∩G 6= ∅, since some state must occur infinitely often in ρ

α
. It would be tempting

to believe that the automaton (A, G) recognizes Σω − L(A, G). However, there may be
words which admit runs which visit both G and G infinitely often. These words will be
including both in L(A, G) as well as in L(A, G). So, there is no convenient way to express
the complement of a Büchi condition again as a Büchi condition.

We shall postpone describing a complementation construction for Büchi automata
until Section 4. Till then we shall, however, assume that we can complement these
automata.

Intersection Turning to intersection, the natural way to intersect automata A1 and A2

is to construct an automaton whose state space is the cross product of the state spaces
of A1 and A2 and let both copies process the input simultaneously. For finite words, the
input is accepted if each copy can generate a run which reaches a final state at the end
of the word.

For infinite inputs, we have to do a more sophisticated product construction. An
infinite input α should be accepted by the product system provided both copies generate
runs which visit good states infinitely often. Unfortunately, there is no guarantee that
these runs will ever visit good states simultaneously—for instance, it could be that the
first run goes through a good state after α(0), α(2), . . . while the second run enters good
states after α(1), α(3), . . . So, the main question is one of identifying the good states of
the product system.

The key observation is that to detect that both components of the product visit good
states infinitely often, one need not record every point where the copies visit good states;
in each copy, it suffices to observe an infinite subsequence of the overall sequence of good
states. So, we begin by focusing on the first copy and waiting for its run to enter a good
state. When this happens, we switch attention to the other copy and wait for a good
state there. Once the second copy reaches a good state, we switch back to the first copy
and so on. Clearly, we will switch back and forth infinitely often iff both copies visit their
respective good states infinitely often. Thus, we can characterize the good states of the
product in terms of the states where one switches back and forth.

Formally, the construction is as follows. Let (A1, G1) and (A2, G2) be two Büchi
automata such that Ai = (Si,→i, S

i
in) for i = 1, 2. Define (A, G), where A = (S,→, Sin),

as follows:

• S = S1 × S2 × {1, 2}

• The transition relation → is defined as follows:

(s1, s2, 1)
a

−→ (s′1, s
′
2, 1) if s1

a
−→1 s

′
1, s2

a
−→2 s

′
2 and s1 /∈ G1.

(s1, s2, 1)
a

−→ (s′1, s
′
2, 2) if s1

a
−→1 s

′
1, s2

a
−→2 s

′
2 and s1 ∈ G1.
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(s1, s2, 2)
a

−→ (s′1, s
′
2, 2) if s1

a
−→1 s

′
1, s2

a
−→2 s

′
2 and s2 /∈ G2.

(s1, s2, 2)
a

−→ (s′1, s
′
2, 1) if s1

a
−→1 s

′
1, s2

a
−→2 s

′
2 and s2 ∈ G2.

• Sin = {(s1, s2, 1) | s1 ∈ S1
in and s2 ∈ S2

in}

• G = S1 ×G2 × {2}.

In the automaton A, each product state carries an extra tag indicating whether the au-
tomaton is checking for a good state on the first or the second component. The automaton
accepts if it switches focus from the second component to the first infinitely often. (Notice
that we could equivalently have defined G to be the set G1 × S2 ×{1}.) It is not difficult
to verify that L(A, G) = L(A1, G1) ∩ L(A2, G2).

Projection Let Σ1 and Σ2 be alphabets such that |Σ2| ≤ |Σ1|. A projection function
from Σ1 to Σ2 is a surjective map π : Σ1 → Σ2. We can extend π from individual letters
to words as usual: if α ∈ Σω

1 , π(α) denotes the word β where β(i) = π(α(i)) for all i in
N0.

Let L ⊆ Σω
1 . Then π(L), the projection of L via π, is the language {β ∈ Σω

2 | ∃α ∈
L : β = π(α)}. It is easy to verify that if L is Büchi-recognizable, then so is π(L). Let
(A1, G1) be an automaton recognizing L, where A1 = (S1,→1, S

1
in). We construct an

automaton A2 = (S2,→2, S
2
in) over Σ2 as follows: set S2 = S1, S

2
in = S1

in and s
b

−→2 s
′ iff

s
a

−→1 s
′ for some a ∈ Σ1 such that π(a) = b. It is easy to verify that (A2, G1) recognizes

π(L).

Emptiness In applications, we will need to be able to check whether the language
accepted by a Büchi automaton is empty. To do this, we recall our observation that any
accepting run of a Büchi automaton must begin in an initial state, reach a final state g
and then cycle back to g infinitely often.

If we ignore the labels on the transitions, we can regard the state space of a Büchi
automaton (A, G) as a directed graph GA = (VA, EA) where VA = S and (s, s′) ∈ EA iff
for some a ∈ Σ, s

a
−→ s′. Recall that a set of vertices X in a directed graph is a strongly

connected component iff for every pair of vertices v, v′ ∈ X, there is a path from v to v′.
Clearly, L(A, G) is non-empty iff there is a strongly connected component X in GA such
that X contains a vertex g from G and X is reachable from one of the initial states. We
thus have the following theorem.

Theorem 1.5 The emptiness problem for Büchi automata is decidable.

Notice that it is sufficient to analyze maximal strongly connected components in GA in
order to check that L(A, G) 6= ∅. Computing the maximal strongly connected components
of a directed graph can be done in time linear in the size of the graph [AHU74], where
the size of a graph G = (V,E) is, as usual, given by |V |+ |E|. Checking reachability can
also be done in linear time. So, if A has n states, checking that L(A, G) 6= ∅ can be done
in time O(n2).
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2 The logic of sequences

Büchi’s original motivation for studying automata on infinite inputs was to solve a decision
problem from logic. He discovered a deep and beautiful connection between ω-regular
languages and sets of models of formulas in certain logics.

S1S

The logic that Büchi considered was the monadic second-order theory of one successor,
abbreviated as S1S. This logic is interpreted over the set N0 of natural numbers. In
general, second-order logic permits quantification over relations and functions, unlike
first-order logic, which permits quantification over just individual variables. However, the
fact that we are dealing with a “monadic” second-order logic restricts this extra power
to quantification over one-place relations. Since a one-place relation is just a subset, this
effectively means that we can quantify over individual elements of N0 and subsets of N0.
The fact that we are dealing with “one successor” means we are talking about N0 with
the usual ordering where each element has a unique successor. Permitting two successors,
for instance, would produce the infinite binary tree which has countably many nodes but
has two successors for each node.

Formally, the logical language S1S is defined as follows.

Terms A term in S1S is built up from the constant 0 and individual variables x, y, . . .
by application of the successor function succ. Thus, the following are terms: 0, succ(x),
succ(succ(succ(0))), succ(succ(y)), . . . .

Atomic formulas Let t, t′, . . . be terms. An atomic formula is of the form t = t′ or
t ∈ X, where X is a set variable.

Formulas A formula is built up from atomic formulas using the boolean connectives
¬ (not) and ∨ (or), together with the existential quantifier ∃. The quantifier ∃ can be
applied to both individual and set variables—one can write ∃x and ∃X. In other words,
if ϕ and ψ are inductively assumed to be formulas, so are ¬ϕ, ϕ∨ψ, (∃x) ϕ and (∃X) ϕ.

In addition, we can define the remaining boolean connectives like ∧ (and), ⇒ (if-then),
⇔ (iff) as usual, in terms of ¬ and ∨: for instance, ϕ ⇒ ψ is defined as (¬ϕ ∨ ψ). We

also have the universal quantifier ∀ which is the dual of ∃: (∀x) ϕ
def
= ¬((∃x) ¬ϕ) and

(∀X) ϕ
def
= ¬((∃X) ¬ϕ).

Assigning truth values to formulas Formulas are interpreted over N0. The con-
stant 0 denotes the number 0. Individual variables x, y, . . . are interpreted as natural
numbers—that is, elements of N0. The function succ corresponds to adding one: succ(x)
denotes the number which is one greater than the interpretation of x. Thus, the term
succ(succ(succ(0))) represents the number 3. And, if the current interpretation of x is
the number 47 then succ(x) denotes 48.

The connective = used in defining atomic formulas denotes equality, as usual. Thus
t = t′ is true provided t and t′ denote the same natural number.
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Set variables like X, Y , . . . are interpreted as subsets of N0. The atomic formula t ∈ X
is true iff the number denoted by t belongs to the set denoted by X.

Once the interpretation of atomic formulas has been fixed, the meaning of compound
formulas involving ¬, ∨ and ∃ is the “natural” one.

Let ϕ be a formula. A variable is said to occur free in ϕ if it is not within the scope of a
quantifier. For instance, in the formula (∃x)(∀Y ) (0 ∈ Y )∨(x = y)∨(x ∈ X), the variables
y and X occur free. Variables which do not occur free are said to be bound. In the pre-
ceding formula, x and Y are bound. We write ϕ(x1, x2, . . . , xk, X1, X2, . . . , Xℓ) to indicate
that all the variables which occur free in ϕ come from the set {x1, x2, . . . , xk, X1, X2, . . . , Xℓ}.

Let
−→
X = (x1, x2, . . . , xk, X1, X2, . . . , Xℓ). To assign a truth value to the formula ϕ(

−→
X ), we

have to first fix an interpretation of the variables in
−→
X . In other words, we must map each

individual variable xi to a natural number mi ∈ N0 and each set variable Xj to a subset

Mj ⊆ N0. Let
−→
M = (m1, m2, . . . , mk,M1,M2, . . . ,Mℓ). We write

−→
M |= ϕ(

−→
X ) to denote

that ϕ is true under the interpretation {xi 7→ mi}i∈{1,2,...,k} and {Xi 7→ Mi}i∈{1,2,...,ℓ}.
Rather than go into formal details, we look at some illustrative examples.

Example 2.1

(i) Let Sub(X, Y ) = (∀x) x ∈ X ⇒ x ∈ Y .

Then (M,N) |= Sub(X, Y ) iff M ⊆ N .

(ii) Let Zero(X) = (∃x) [x ∈ X ∧ ¬(∃y)(y < x)].

This formula asserts that X contains an element which has no predecessors in N0.
Thus, M |= Zero(X) iff 0 ∈M .

(iii) Let Lt(x, y) = (∀Z)[succ(x) ∈ Z ∧ (∀z)(z ∈ Z ⇒ succ(z) ∈ Z)] ⇒ (y ∈ Z).

Then (m,n) |= Lt(x, y) iff m < n. What the formula asserts is that any set Z which
contains x+1 and is closed with respect to the successor function must also contain
y.

(iv) Let Sing(X) = (∃Y ) [Sub(Y,X) ∧ (Y 6= X) ∧
¬(∃Z) (Sub(Z, Y ) ∧ (Z 6= X) ∧ (Z 6= Y ))].

In this formula, X 6= Y abbreviates ¬(X = Y ), where X = Y is itself an abbrevi-
ation for Sub(X, Y ) ∧ Sub(Y,X). The formula asserts that X has only one proper
subset, which is Y . This is true only for singletons, where Y is the empty set. So,
M |= Sing(X) iff M is a singleton {m}.

2

A sentence is a formula in which no variables occur free. A sentence ϕ is either true or
false—we do not have to interpret any variables to assign meaning to ϕ. For instance
consider the sentence

(∀X) [0 ∈ X ∧ (∀x) (x ∈ X ⇒ succ(x) ∈ X)] ⇒ (∀x) x ∈ X.

This sentence is true: it expresses the familiar property of mathematical induction for
subsets of N0—if a set of natural numbers contains 0 and is closed with respect to the
successor function, then the set in fact includes all of N0.

10



Satisfiability An S1S formula ϕ(x1, . . . , xk, X1, . . . , Xℓ) is said to be satisfiable if we

can choose
−→
M = (m1, . . . , mk,M1, . . . ,Mℓ) such that

−→
M |= ϕ(

−→
X ).

Büchi showed how to associate an ω-regular language Lϕ with each S1S formula ϕ,
such that every word in Lϕ represents an interpretation for the free variables in ϕ under
which the formula ϕ evaluates to true. Moreover, every interpretation which makes ϕ true
is represented by some word in Lϕ. Thus, ϕ is satisfiable iff there is some interpretation
which makes it true iff Lϕ is non-empty. The language Lϕ is defined over the alphabet
{0, 1}m, where m is the number of free variables in ϕ.

In fact, Büchi showed that the converse is also true. Let us say that a language
L ⊆ ({0, 1}m)ω is S1S-definable if L = Lϕ for some S1S formula ϕ. We can always embed
an arbitrary alphabet Σ as a subset of {0, 1}m for some suitable choice of m. In this way,
any language L ⊆ Σω can be converted into an equivalent language L{0,1} over {0, 1}m.
Büchi showed that if L is ω-regular, then L{0,1} is S1S-definable.

Thus, the notions of S1S-definability and ω-regularity are equivalent. The rest of this
section will be devoted to formally stating and proving this result.

We begin by defining Lϕ for an S1S formula ϕ(x1, x2, . . . , xk, X1, X2, . . . , Xℓ). Let
−→
M = (m1, m2, . . . , mk,M1,M2, . . . ,Mℓ) such that

−→
M |= ϕ(

−→
X ). We can associate with

−→
M an infinite word α

M
over {0, 1}k+ℓ which represents the characteristic function of

−→
M .

For i ∈ N0, and j ∈ {1, 2, . . . , k+ℓ}, let α
M

(i)(j) denote the jth component of α
M

(i).
Then for i ∈ N0 and j ∈ {1, 2, . . . , k}, α

M
(i)(j) = 1 iff i = mj and α

M
(i)(j) = 0 iff

i 6= mj. Similarly, for i ∈ N0, and j ∈ {k+1, k+2, . . . , k+ℓ}, α
M

(i)(j) = 1 iff i ∈ Mj and
α

M
(i)(j) = 0 iff i /∈Mj . Then

Lϕ = {α
M
|
−→
M |= ϕ(

−→
X )}.

Next we define the {0, 1}-image L{0,1} corresponding to a language L over an arbitrary
alphabet Σ. Let Σ = {a1, a2, . . . , am}. Then, each word α ∈ Σω can be represented by
a word α{0,1} over {0, 1}m, where for all i ∈ N0 and j ∈ {1, 2, . . . , m}, α{0,1}(i)(j) = 1 if
α(i) = aj and α{0,1}(i)(j) = 0 if α(i) 6= aj. Then

L{0,1} = {α{0,1} | α ∈ L}.

We can now state Büchi’s result more precisely.

Theorem 2.2

(i) Let ϕ be an S1S formula. Then Lϕ is an ω-regular language.

(ii) Let L be an ω-regular language. Then L{0,1} is S1S-definable.2

Proof

(i) To show that Lϕ is ω-regular, we proceed by induction on the structure of ϕ. To do
this, it will be convenient to cut down the language S1S to an equivalent language
S1S0 which has a simpler syntax.

2We have fixed a apecific embedding of Σ into {0, 1}m which is relatively easy to describe in S1S. In

general, we can choose any embedding for defining L{0,1} and the result will still go through.
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s1 s2=⇒

〈1, 0〉

〈0, 0〉
〈0, 1〉
〈1, 1〉

Figure 4: Büchi automaton for the atomic formula X ⊆ Y

Formally, in S1S0 we do not have individual variables xi—there are only set variables
Xj. The atomic formulas are of the form X ⊆ Y and succ(X, Y ). The first formula
is true if X is a subset of Y while the second is true if X and Y are singletons {x}
and {y} respectively and y = x+1.

We now argue that every S1S formula ϕ can be converted to an S1S0 formula ϕ0

such that Lϕ = Lϕ0
.

We begin by eliminating nested applications of the successor function. For instance,
if the S1S formula contains the atomic formula succ(succ(x)) ∈ X, we write instead

(∃y)(∃z) y = succ(x) ∧ z = succ(y) ∧ z ∈ X.

We then eliminate formulas of the form 0 ∈ X using the formula Zero(X) defined
in Example 2.1.

Finally, we eliminate singleton variables using the formula Sing from Example 2.1.
For instance, we rewrite (∀x)(∃y) succ(x) = y ∧ y ∈ Z as

(∀X) (Sing(X) ⇒ [(∃Y ) Sing(Y ) ∧ succ(X, Y ) ∧ Y ⊆ Z]).

Notice that we can uniformly replace Sub(X, Y ) by X ⊆ Y in Sing since X ⊆ Y is
an atomic formula in SIS0.

We now construct for each S1S0 formula ϕ, a Büchi automaton (Aϕ, Gϕ) recognizing
Lϕ.

For the atomic formula X ⊆ Y , the corresponding automaton over {0, 1}×{0, 1} is
shown in Figure 4. This automaton accepts any input word which does not contain
〈1, 0〉—if α(i) = 〈1, 0〉, in the corresponding interpretation, i ∈ X but i /∈ Y , thus
violating the requirement that X ⊆ Y .

��
��

��
��

��
��
��
��

=⇒

〈0, 0〉 〈0, 0〉

s1 s2 s3
〈1, 0〉 〈0, 1〉

Figure 5: Büchi automaton for the atomic formula succ(X, Y )
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The other atomic formula is succ(X, Y ). The corresponding automaton is shown in
Figure 5. This automaton accepts inputs of the form 〈0, 0〉i〈1, 0〉〈0, 1〉〈0, 0〉ω, i ∈ N0,
corresponding to the interpretation where X = {i} and Y = {i+1}.

For the induction step, we need to consider the connectives ¬, ∨ and ∃X.

Let ϕ = ¬ψ. Then, Lϕ is the complement of Lψ. By the induction hypothesis,
there exists a Büchi automaton (Aψ, Gψ) which recognizes Lψ. As we mentioned
earlier, there is an effective way to construct an automaton (Aϕ, Gϕ) recognizing
the complement of Lψ. The details will be described in Section 4.

If ϕ = ϕ1 ∨ ϕ2, then Lϕ = Lϕ1
∪ Lϕ2

. By the induction hypothesis, there exist
automata (Aϕ1

, Gϕ1
) and (Aϕ2

, Gϕ2
) such that L(Aϕi

, Gϕi
) = Lϕi

for i = 1, 2.
We have seen in Section 1.2 how to construct an automaton (Aϕ, Gϕ) such that
L(Aϕ, Gϕ) = Lϕ1

∪ Lϕ2
.

Finally, if ϕ = (∃X1) ψ(X1, X2, . . .Xm), the language Lϕ corresponds to the projec-
tion of Lψ via the function π : {0, 1}m → {0, 1}m−1 which erases the first component
of eachm-tuple in {0, 1}m. A word of (m−1)-tuples belongs to Lϕ if it can be padded
out with an extra component so that the resulting word over m-tuples is in Lψ. This
padding operation corresponds to guessing a witness for the set X1. The automaton
(Aϕ, Gϕ) recognizing Lϕ can be obtained from (Aψ, Gψ), the automaton recognizing
Lψ, as described in Section 1.2.

In this way, we inductively associate with each S1S0 formula ϕ, a Büchi automaton
(Aϕ, Gϕ) such that Lϕ = L(Aϕ, Gϕ).

There is a slight technicality involved when we deal with sentences. Notice that
every time we encounter an existential quantifier, we eliminate one component from
the input alphabet of Aϕ. If ϕ is a sentence—that is, all variables in ϕ are bound—
we would have erased all components of the input by the time we construct Aϕ. In
other words, Aϕ will be an input-free automaton whose states and transitions define
an unlabelled directed graph. If we were dealing with languages of finite words, we
could say that a sentence ϕ is true iff Lϕ contains the empty word. Since the empty
word is not a member of Σω, we would have to slightly modify our definition of Lϕ to
accommodate this case cleanly in our framework. However, we shall not worry too
much about this since it is clear that a sentence ϕ is true iff there is an unlabelled
path in the graph corresponding to Aϕ which begins at some initial state and visits
a good state infinitely often.

(ii) Let (A, G) be a Büchi automaton recognizing L ⊆ Σω, where Σ = {a1, a2, . . . , am}
and A = (S,→, Sin), with S = {s1, s2, . . . , sk}. We use free variables A1, A2, . . . , Am
to describe each infinite word over Σ—the variable Ai describes the positions in
the input where letter ai occurs. We then use existentially quantified variables
S1, S2, . . . , Sk to describe runs of the automaton over the input—the variable Sj
describes the positions in the run where the automaton is in state sj .

The formula ϕL can then be written as follows:

13



(∃S1)(∃S2) · · · (∃Sk)

(∀x)
∨

i∈{1,2,...,m}

(x ∈ Ai) ∧
∧

i∈{1,2,...,m}



x ∈ Ai ⇒
∨

j 6=i

x /∈ Aj





∧ (∀x)
∨

i∈{1,2,...,k}

(x ∈ Si) ∧
∧

i∈{1,2,...,k}



x ∈ Si ⇒
∨

j 6=i

x /∈ Sj





∧
∨

si∈Sin

(0 ∈ Si)

∧ (∀x)
∨

(si,aj ,sk)∈→

(x ∈ Si) ∧ (x ∈ Aj) ∧ (succ(x) ∈ Sk)

∧
∨

si∈G

(∀x)(∃y) (x < y) ∧ (y ∈ Si)

The first two lines capture the fact that with each position x ∈ N0 we associate
precisely one input letter and one state from the run. The third line asserts that
the position 0 corresponds to an initial state. The fourth line guarantees that the
sequence of states represented by S1, S2, . . . , Sk is a run. The last line then says that
the run is good—that is, some final state appears infinitely often. It is not difficult
to verify that LϕL

= L{0,1}.

2

3 Stronger acceptance conditions

As we saw earlier, deterministic Büchi automata cannot recognize all ω-regular languages
(Corollary 1.3). It turns out that we can define classes of deterministic automata which
recognize ω-regular languages by strengthening the acceptance criterion. We begin with
the definition proposed by Muller [Mu63].

Muller automata A Muller automaton is a pair (A, T ) where A = (S,→, Sin) is an
automaton, as before, and T = 〈F1, F2, . . . , Fk〉 is an acceptance table with Fi ⊆ S for
i ∈ {1, 2, . . . , k}.

The automaton (A, T ) accepts an input α : N0 → Σ if there is a run ρ of A on α such
that inf(ρ) ∈ T —that is, inf(ρ) = Fi for some i ∈ {1, 2, . . . , k}.

The acceptance table of a Muller automaton places a much more stringent requirement
on runs than a Büchi condition does. The table entry Fi makes a positive demand on the
states in Fi, as well as a negative demand on the states in S−Fi—states in Fi must all be
visited infinitely often while states outside Fi must be visited only finitely often. In other
words, for a run ρ to satisfy the table entry Fi, after some point it must “settle down” in
the set Fi and visit all the states in this set infinitely often without making transitions to
any state outside Fi.

Example 3.1 Recall the language L over {a, b} defined in Example 1.1—L contains
all words which contain infinitely many occurrences of a. We saw that the deterministic
automaton with two states shown in Figure 6 recognizes L with a Büchi condition {s1}.

To accept L using a Muller condition, we retain the same automaton and set the
acceptance table to 〈{s1}, {s1, s2}〉.

14
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b

a

s1 s2=⇒

Figure 6: Automaton for L and L (Example 3.1)

We also saw that L, the complement of L could not be recognized by any deterministic
Büchi automaton. However, it is easy to verify that L can be recognized with a Muller
condition by using the same automaton as for L, but with the acceptance table given by
〈{s2}〉. 2

Simulations The example shows that deterministic Muller automata are strictly more
powerful than deterministic Büchi automata. It is quite straightforward to simulate a
Büchi automaton by a Muller automaton—we construct an entry in the Muller table
for each subset of states which contains a good state. Formally, let (A, G) be a Büchi
automaton, where A = (S,→, Sin). The corresponding Muller automaton is given by
(A, TG) where TG = {F ⊆ S | F ∩ G 6= ∅}. It is easy to see that L(A, G) = L(A, TG)—
any successful run of the Büchi automaton will satisfy one of the entries in the Muller
table. Conversely, any run which satisfies an entry in TG must visit a good state in-
finitely often. Notice that the Muller automaton (A, TG) is deterministic iff the original
automaton (A, G) was deterministic: this simulation neither introduces nor removes any
non-determinism.

Conversely, any Muller automaton can be simulated by a non-deterministic Büchi
automaton. Let (A, T ) be a Muller automaton, where T = 〈F1, F2, . . . , Fk〉. For each
i ∈ {1, 2, . . . , k}, we construct a Büchi automaton (Ai, Gi) such that (Ai, Gi) accepts
an input α iff there is a run ρ of (A, T ) on α with inf(ρ) = Fi. It is easy to see that
L(A, T ) =

⋃

i∈{1,2,...,k}L(Ai, Gi). As described in Section 1.2, we can then construct a
Büchi automaton (AT , GT ) which recognizes L(A, T ).

To construct (Ai, Gi) we proceed as follows. When reading an input α, Ai simulates a
run of A. At some point, A non-deterministically decides that no more states from S−Fi
will occur along the run being simulated. After this guess is made, Ai will only simulate
moves which stay within Fi. At the same time, Ai repeatedly cycles through Fi, checking
that all states from Fi are seen infinitely often.

Let A = (S,→, Sin) and Fi = {si1, si2 , . . . , sim}. Then (Ai, Gi), with Ai =
(Si,→i, S

i
in), is defined as follows:

• Si = {(s, finite) | s ∈ S} ∪ {(s, infinite, j) | s ∈ Fi, j ∈ {0, 1, . . . , m−1}}.

• The transition relation →i is given as follows:

(s, finite)
a

−→i (s′, finite) if s
a

−→ s′.
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(s, finite)
a

−→i (s′, infinite, 0) if s
a

−→ s′ and s′ ∈ Fi.

(s, infinite, k)
a

−→i (s′, infinite, k) if s
a

−→ s′, s′ ∈ Fi and s 6= sik+1
.

(s, infinite, k)
a

−→i (s′, infinite, (k+1) mod m) if s
a

−→ s′, s′ ∈ Fi and s = sik+1
.

• Siin = {(s, finite) | s ∈ Sin}.

• Gi = {(sim , infinite, m−1)}.

These two simulation constructions show that the class of Muller-recognizable languages
coincides with the class of Büchi-recognizable languages. In other words, Muller automata
also recognize ω-regular languages.

However, Example 3.1 suggests that deterministic Muller automata may suffice for
recognizing all ω-regular languages. In fact, this is the case—this non-trivial result was
proved by McNaughton [Mc66].

Theorem 3.2 (McNaughton) Every ω-regular language is recognized by a determinis-
tic Muller automaton.

We shall prove McNaughton’s result indirectly in Section 4. Notice that McNaughton’s
theorem, combined with the simulation constructions described above, yields a comple-
mentation construction for Büchi automata. This is because complementing determin-
istic Muller automata is easy. Let (A, T ) be a deterministic Muller automaton, where
A = (S,→, Sin). Let T = {F ⊆ S | F /∈ T }. It is straightforward to verify that
L(A, T ) = Σω −L(A, T ). So, to complement a Büchi automaton (A, G), we first convert
it into an equivalent deterministic Muller automaton (A, T ) using McNaughton’s theo-
rem. We then simulate (A, T ) using the construction described earlier to get a Büchi
automaton (AT , GT ) which accepts the complement of L(A, G).

Rather than follow this route, we shall describe an alternative determinization con-
struction due to Safra [Sa88]. Safra’s construction converts a Büchi automaton to a
deterministic automaton with a pairs table. Acceptance in terms of a pairs table first
described by Rabin [Ra69].

Rabin automata A Rabin automaton is a structure (A,PT ) where A = (S,→, Sin)
is an automaton, as before, and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉 is a pairs table
with Gi, Ri ⊆ S for i ∈ {1, 2, . . . , k}.

The automaton (A,PT ) accepts an input α : N0 → Σ if there is a run ρ of A on α
such that for some i ∈ {1, 2, . . . , k}, inf(ρ) ∩Gi 6= ∅ and inf(ρ) ∩ Ri = ∅.

Thus each pair (Gi, Ri) in the pairs table of a Rabin automaton specifies a positive
and a negative requirement on the run, as in the acceptance table of a Muller automaton.
The positive entry Gi is just a Büchi condition while the negative entry Ri is like the one
specified for S−Fi by an entry Fi in a Muller acceptance table. If we think of Gi and Ri

as “green lights” and “red lights”, a run ρ satisfies (Gi, Ri) if some green light from Gi

flashes infinitely often and no red light from Ri flashes infinitely often.
Returning to Example 3.1, the language L is accepted by the automaton of Figure 6

with the pairs table 〈({s1}, ∅)〉, while L is accepted by the same automaton with the pairs
table 〈({s2}, {s1})〉.
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Büchi automata can be trivially simulated by Rabin automata—if (A, G) is a Büchi
automaton, the corresponding Rabin automaton is (A,PT G), where PT G = 〈{G, ∅}〉.

Conversely, we can simulate Rabin automata by Büchi automata using a construction
similar to the one for simulating Muller automata by Büchi automata. As before, it
suffices to construct a separate Büchi automaton (Ai, G

′
i) for each entry (Gi, Ri) in the

pairs table of a Rabin automaton (A,PT ). The automaton (Ai, G
′
i) simulates a run of

A and guesses when no more states from Ri will be seen. It then checks that states from
Gi occur infinitely often.

Let A = (S,→, Sin) and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉. Then (Ai, G
′
i), with

Ai = (Si,→i, S
i
in), is defined as follows:

• Si = {(s, finite) | s ∈ S} ∪ {(s, infinite, j) | s ∈ (S − Ri), j ∈ {0, 1}}}.

• The transition relation →i is given as follows:

(s, finite)
a

−→i (s′, finite) if s
a

−→ s′.

(s, finite)
a

−→i (s′, infinite, 0) if s
a

−→ s′ and s′ /∈ Ri.

(s, infinite, 0)
a

−→i (s′, infinite, 0) if s
a

−→ s′, s′ /∈ Ri and s /∈ Gi.

(s, infinite, 0)
a

−→i (s′, infinite, 1) if s
a

−→ s′, s′ /∈ Ri and s ∈ Gi.

(s, infinite, 1)
a

−→i (s′, infinite, 0) if s
a

−→ s′ and s′ /∈ Ri.

• Siin = {(s, finite) | s ∈ Sin}.

• G′
i = {(s, infinite, 1) | s ∈ (S − Ri)}.

Notice that a Rabin automaton can also simulated by a Muller automaton in quite a
straightforward manner. Let (A,PT ) be a Rabin automaton, where A = (S,→, Sin)
and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉. Each pair (Gi, Ri) generates a Muller table
Ti = {F ⊆ (S − Ri) | F ∩ Gi 6= ∅}. Let T =

⋃

i∈{1,2,...,k} Ti. It is easy to see that
(A, T ) recognizes L(A,PT ). Once again, since we have not modified A, the simulating
automaton is deterministic iff the original automaton was.

To simulate Muller automata using Rabin automata one has to use a construction
which is pretty much the same as the one for simulating Muller automata by Büchi
automata. Such a simulation introduces non-determinism: there is no straightforward way
to directly simulate a deterministic Muller automaton by a deterministic Rabin automaton
even though deterministic Rabin automata do recognize all ω-regular languages, as we
shall see in the next section.

The last acceptance condition we look at is obtained by interpreting the pairs table of
a Rabin automaton in a complementary fashion.

Streett automata A Streett automaton is a structure (A,PT ) where A = (S,→, Sin)
and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉 are defined in the same way as for Rabin
automata.

The Streett automaton (A,PT ) accepts an input α : N0 → Σ if there is a run ρ of
A on α such that for every i ∈ {1, 2, . . . , k}, if inf(ρ) ∩ Gi 6= ∅ it is also the case that
inf(ρ) ∩Ri 6= ∅.
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These automata were defined by Streett in [St88]. They are useful for describing fairness
conditions in infinite computations—for instance, conditions of the form “if a request for
a resource is made infinitely often, then the system grants access to the resource infinitely
often”. The following observation is immediate from the close connection between Rabin
and Streett automata.

Proposition 3.3 Let (A,PT ) be a deterministic automaton with a pairs table. Let LR
be the language accepted by (A,PT ) when PT is interpreted as a Rabin condition and LS
be the language accepted by (A,PT ) when PT is interpreted as a Streett condition. Then
LS is the complement of LR.

As usual, simulating a Büchi automaton (A, G) by a Streett automaton is easy. Let
A = (S,→, Sin). Construct an automaton (A,PT G) where PT G = 〈(S,G)〉. Since
inf(ρ)∩S must be non-empty for any run ρ of A, it follows that a run ρ satisfies the pair
(S,G) iff inf(ρ) ∩G 6= ∅, which is precisely what the Büchi condition demands.

In the converse direction, Safra describes a construction due to Vardi which shows
that Streett automata can be efficiently simulated by Büchi automata [Sa88].

Lemma 3.4 Let (A,PT ) be a Street automaton where A = (S,→, Sin). Let n = |S|
and let k be the number of pairs in PT : that is, PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉.
Then, we can construct a Büchi automaton (A′, G′) with A′ = (S ′,→′, S ′

in) such that
L(A′, G′) = L(A,PT ) and |S ′| = n · 2O(k).

Proof The automaton A′ simulates A. As usual, A′ guesses an initial prefix of the
run after which every state which is visited by the run will in fact be visited infinitely
often. After making this guess, A checks that the acceptance criterion is met for each
pair (Gi, Ri) ∈ PT . In other words, for every i such that some state from Gi appears in
the infinite portion of the run, A′ ensures that some state from Ri also appears infinitely
often. To do this, A′ maintains two sets as part of its state. The first set accumulates the
list of indices corresponding to pairs (Gi, Ri) where some element of Gi occurs infinitely
often. The second set repeatedly accumulates indices of pairs (Gi, Ri) for which some
element of Ri has been visited. Each time the second set becomes as large as the first, it
is reset to empty. It is not difficult to see that the acceptance criterion specified by PT
is met iff the second set is reset to empty infinitely often during the simulation.

Formally, we construct (A′, G′) as follows:

• S ′ = {(s, finite) | s ∈ S} ∪ {(s,X1, X2) | s ∈ S and X1, X2 ⊆ {1, 2, . . . , k}}.

• The transition relation →′ is defined as follows:

(s, finite)
a

−→′ (s′, finite) if s
a

−→ s′.

(s, finite)
a

−→′ (s′, ∅, ∅) if s
a

−→ s′.

(s,X, Y )
a

−→′ (s′, X ∪Gs′, Y ∪ Rs′) if s
a

−→ s′ and X ∪Gs′ 6⊆ Y ∪ Rs′,
where Gs′ = {i ∈ {1, 2, . . . , k} | s′ ∈ Gi} and

Rs′ = {i ∈ {1, 2, . . . , k} | s′ ∈ Ri}.

(s,X, Y )
a

−→′ (s′, X ∪Gs′, ∅) if s
a

−→ s′ and X ∪Gs′ ⊆ Y ∪Rs′ .
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• Siin = {(s, finite) | s ∈ Sin}.

• Gi = {(s,X, ∅) | s ∈ S,X ⊆ {1, 2, . . . , k}}.

2

4 Determinizing Büchi automata

We now describe an elegant construction due to Safra for determinizing Büchi automata
[Sa88]. Safra’s construction converts a non-deterministic Büchi automaton (A, G) into
a deterministic Rabin automaton (AG,PT G) such that L(AG,PT G) = L(A, G). If we
regard (AG,PT G) as a Streett automaton, we get a deterministic automaton recogniz-
ing the complement of L(A, G). By Lemma 3.4, we can simulate the Streett automaton
(AG,PT G) by a Büchi automaton. Thus Safra’s construction also solves the complemen-
tation problem for Büchi automata.

Also, recall that it is easy to convert a deterministic Rabin automaton into a deter-
ministic Muller automaton. As a consequence, Safra’s construction gives an indirect proof
of McNaughton’s Theorem (Theorem 3.2).

Safra’s determinization construction for Büchi automata is a clever extension to the
infinite word case of the classical subset construction for determinizing automata on finite
words. In order to motivate the construction, we begin with the subset construction for
finite words and enhance it in a graded manner to achieve the final result.

Subset construction For automata on finite words, the subset construction is the
standard way to eliminate non-determinism. If the original automaton is (A, F ), with
A = (S,→, Sin), each state of the subset automaton (Ssub,→sub, S

sub
in ) is a subset of S.

The (single) initial state of the subset automaton is the set Sin of initial states of A. The
subset automaton’s transition relation →sub is defined as follows:

X
a

−→sub Y iff Y = {y ∈ S | ∃x ∈ X : x
a

−→ y}.

Henceforth, we use δsub(X, a) to denote the set Y such that X
a

−→sub Y .
The subset automaton satisfies the following property: If X

w
−→+

sub Y then for each
state y in Y , there is an state x ∈ X such that x

w
−→+ y in the original automaton.

From this, it follows that if we set the set of final states of the subset automaton to
be Fsub = {X ⊆ S | S ∩F 6= ∅}, then (Asub, Fsub) recognizes the same set of words as the
original automaton.

Let (A, G) be a non-deterministic Büchi automaton, with A = (S,→, Sin). The
natural extension of the subset construction to Büchi automata would set the good states
of the subset automaton to Gsub = {X ⊆ S | X ∩G 6= ∅}.

It is easy to see that if (A, G) accepts an input α, so will (Asub, Gsub). Unfortunately,
the converse is not true—the subset automaton will accept words which are not part of
the original language.

Example 4.1 Consider the automaton of Example 1.1 (Figure 3) which recognizes L
over {a, b} given by L = {α | α has only a finite number of occurrences of a}.

In this example, Gsub, the set of good states of the extended subset automaton, is
given by {{s1, s2}, {s2}}. On the input (ab)ω = ababab · · ·, the (unique) run of the subset
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Figure 7: A run of the extended subset automaton for L on input (ab)ω (Example 4.1)

automaton is {s1}({s1}{s1, s2})
ω = {s1}{s1}{s1, s2}{s1}{s1, s2}{s1}{s1, s2} · · ·. Since

this run visits Gsub infinitely often, the automaton (Asub, Gsub) accepts the word (ab)ω,
even though a occurs infinitely often in this word.

The problem with the subset construction is best brought out by drawing all the
“threads” between the individual subsets in this run of the subset automaton—see Fig-
ure 7.

As we can see, every finite run of the original automaton which reaches a good state
actually dies out at that point. In general, all that this subset construction guarantees is
that the original automaton has arbitrarily long finite runs which visit good states. 2

Marked subset construction We next try to strengthen the subset construction so
that it explicitly keeps track of the threads between subsets. In the marked subset con-
struction, in addition to keeping a subset of states, the subset automaton also has the
ability to “mark” each state in the subset. A state in the current subset is marked if it
satisfies one of two conditions: either it is a good state, or it has a marked predecessor
in the previous subset. However, if all the states in the previous subset are marked, then
only good states are marked in the current subset—no marks are inherited from a fully
marked state. The good states in the marked subset automaton are those where the entire
subset is marked.

Concretely, let (A, G) be the original non-deterministic Büchi automaton with A =
(S,→, Sin). Then, the marked subset automaton (AM , GM), with AM = (SM ,→M , S

M
in ),

is given as follows.

• SM = {(X, f) | X ⊆ S, f : X → {marked, unmarked}}.

• The transition function →M is as follows:

(X, f)
a

−→M (Y, g) iff

– Y = δsub(X, a).
(Recall that Y = δsub(X, a) iff in the normal subset automaton, X

a
−→sub Y .)

– If f(x) = marked for all x ∈ X
then

∀y ∈ Y : g(y) =

{

marked if y ∈ G
unmarked otherwise

else

∀y ∈ Y : g(y) =











marked if y ∈ G or

(∃x ∈ X : f(x) = marked and x
a

−→ y)
unmarked otherwise
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• SMin = {(Sin, f) | ∀s ∈ Sin : f(s) = marked}.

• GM = {(X, f) | ∀x ∈ X : f(x) = marked}.

The main property satisfied by this automaton is the following.

Let ρ be a run of (AM , GM) on an input α such that ρ(i) = (Xi, fi) for all
i ∈ Nat. Suppose that (Xk, fk) ∈ G for some k > 0. Let j be the largest
natural number less than k such that (Xj , fj) ∈ G—such a number j must
exist because the initial state of AM belongs to G.

Then, for each state y ∈ Yk, there is a state x ∈ Xj such that x −α[j..k−1]→∗ y
in the original automaton and, moreover, when going from x to y on reading
α[j..k−1], the original automaton goes through some good state.

From this observation, we can deduce that the marked subset construction is sound.

Proposition 4.2 Let (AM , GM) be the marked subset automaton which corresponds to
the Büchi automaton (A, G). Then, if (AM , GM) accepts an input α, so does (A, G).

Proof Let ρ
α

be the (unique) run of AM on an input α with ρ
α
(i) = (Xi, fi) for i ∈ N0.

If (AM , GM) accepts α, there must be an infinite sequence of positions {i0, i1, . . .} ⊆ N0

such that 0 = i0 < i1 < · · · and (Xj , fj) ∈ G for all j ∈ {i0, i1, . . .}.
From our previous observation about the marked subset construction, we know that

for each index ik+1 in the set {i0, i1, . . .} and for each state x ∈ Xik+1
, there is a state

y ∈ Xik such that in the original automaton, there is a sequence of transitions leading
from y to x on the input α[ik..ik+1−1] which passes through some good state. Let us call
such a state y a good predecessor of x.

We construct an infinite tree Tα as follows. The root of the tree is the set Sin of initial
states. At each level k of the tree, k ≥ 1, we have a node n(x,ik) corresponding to each
state x ∈ Xik . The parent of a node n(x,j) at level j, j > 1, is a node n(y,j−1) at level j−1
such y is a good predecessor of x. (Of course, x may have more than one good predecessor.
If this is the case, we arbitrarily select one of them and make the corresponding node the
parent of n(x,j) in the tree.)

The tree Tα is finitely branching and has an infinite number of nodes. By König’s
lemma, it must have an infinite path. Each infinite path in Tα corresponds to a run of
the original automaton A on α. By construction, such a run must pass through a good
state between each level in the tree. Thus, A has at least one run on α which meets G
infinitely often. 2

Unfortunately, though the marked subset construction is sound, it is not complete—there
may be inputs accepted by (A, G) which are not accepted by (AM , GM). Consider the
following example.

Example 4.3
In the Büchi automaton shown in Figure 8, the input aω generates the sequence of

subsets {s0}({s1, s2})
ω. Since s2 is not a final state, the subset {s1, s2} never becomes

fully marked. Thus, though the original automaton has an accepting run s0s
ω
1 on this

input, the marked subset construction fails to detect this. 2

The problem is that the marked subset construction demands too much from the
underlying runs. As the example shows, it should be sufficient to identify a portion of the
subset which is marked and which can infinitely often regenerate its marks.
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Figure 8: The marked subset construction is not complete (Example 4.3)

Hierarchical Marked Subset Construction A first attempt to weaken the marked
subset construction would be to have a hierarchy of marks. At the base level, the subset
automaton runs the marked subset construction and marks states using a level 1 mark.
The states which have level 1 marks then start off a nested copy of the marked subset
construction with level 2 marks. Similarly, the states which have level 2 marks start off a
marked subset construction with level 3 marks. What we would like to detect is whether
some level i can get completely marked. This corresponds to checking if the set of nodes
marked at level i is equal to the set of nodes marked at level i+1. If so, we reset all marks
at levels greater than i and continue.

Since the number of nodes marked at level i is always strictly greater than the set of
nodes marked at level i+1, there can be at most as many levels as there are states in the
original automaton.

To specify the acceptance condition, we need to verify that some level i+1 gets set
to empty infinitely often and that level i does not get set to empty in between. In other
words, level i denotes a permanent thread through the subset construction which gets
marked infinitely often. To do this, we have to pass from a Büchi condition to a Rabin
condition—for each i, a positive condition for level i+1 has to be qualified by a negative
condition for level i.

Here is a formal description of a hierarchical marked subset construction which at-
tempts to achieve this goal. Let (A, G) be a Büchi automaton, with A = (S,→, Sin).
Define (AH ,PT H), with AH = (SH ,→H, S

H
in), as follows:

• Let |S| = n. SH consists of pairs of the form (σ, χ) where:

– σ : {1, 2, . . . , n} → 2S is a subset list satisfying the condition that σ(i+1) is a
proper subset of σ(i) whenever σ(i) is non-empty.

– χ : {1, 2, . . . , n} → {white, green} is a colour list.

• SHin = (σ0, χ0), where σ0(1) = Sin, σ0(i) = ∅ for all i ∈ {2, 3, . . . , n} and χ(i) = white

for all i ∈ {1, 2, . . . , n}.

• The transition function →H performs the following sequence of actions. Initially,
each level runs the subset construction locally. Next, any final states appearing in
the new subset at level i are added to the subset at level i+1—this corresponds to
generating fresh marks at level i. We now look for the smallest level i whose subset
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is the same as that at level i+1. If such an i exists, we “clear out” the subset list
from level i+1 onwards and set the colour of level i to green.

More formally, on reading an input a, the state (σ, χ) generates a new state (σ′, χ′)
as follows:

(i) Let σ1 : {1, 2, . . . , n+ 1} → 2S be defined as follows:

– σ1(1) = δsub(σ(1), a).

– For i ∈ {2, 3, . . . , n}, σ1(i) = δsub(σ(i), a) ∪ (δsub(σ(i−1), a) ∩G).

– σ1(n+1) = δsub(σ(n), a) ∩G.

(ii) If there is no index i ∈ {1, 2, . . . , n} such that σ1(i) = σ1(i+1), then

– σ′(i) = σ1(i) for all i ∈ {1, 2, . . . , n}.

– χ′(i) = white for all i ∈ {1, 2, . . . , n}.

else, let m be the smallest index such that σ1(m) = σ1(m+1). Then,

– σ′(i) = σ1(i) for all i ∈ {1, 2, . . . , m} and σ′(i) = ∅ for all i > m.

– χ′(m) = green and χ′(i) = white for all i 6= m.

• The acceptance table PT H consists of n pairs 〈(G1, R1), (G2, R2), . . . , (Gn, Rn)〉
where:

– Ri = {(σ, χ) | σ(i) = ∅}

– Gi = {(σ, χ) | χ(i) = green}

In this construction, the list σ implicitly records the levels of marks associated with the
states in the current subset—a state s belongs to σ(i+1) iff s has a level i mark in the
current subset. It is not difficult to show that this construction is complete.

Proposition 4.4 Let (AH ,PT H) be the hierarchical marked subset automaton which
corresponds to the Büchi automaton (A, G). If (A, G) accepts an input α, so does
(AH ,PT H).

Proof Suppose (A, G) accepts α. Then, α admits a run ρ which visits G infinitely often.
We must show that the unique run ρ

α
of AH on α satisfies some entry in PT H .

For j ∈ N0, let ρ
α
(j) = (σj , χj). We know that for all j ∈ N0, σj(1) is the set of states

maintained by the subset construction. Since ρ is a valid run of A on α, σj(1) is always
non-empty. So, ρ

α
satisfies condition R1. If it also satisfies G1 then (AH ,PT H) accepts

α and we are done.
If ρ

α
does not satisfy G1, let k0 be the last position where the colour of the first level

is green. We wait for the first position i0 > k0 where ρ, the accepting run of A on α,
next visits a good state. We know that σj(2) is non-empty for all j ≥ i0—once the good
state seen at position i0 gets pushed to level 2, the accepting run ρ will be part of the
subset construction maintained at level 2, thus guaranteeing that at least one valid state
is generated at each point. So, ρ

α
satisfies R2. If it also satisfies G2 we are done.

Otherwise, we repeat the argument above and deduce that ρ
α

satisfies R3, with the
accepting run ρ a part of σj(3) for all j greater than a finite index i1. We can repeat this
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Figure 9: The hierarchical marked subset construction is not sound (Example 4.5)

argument only a finite number of times, till we reach level n. The subset maintained at
level n can never be more than a singleton. If the accepting run ρ is part of the subset
construction at level n, it must generate the signal green infinitely often in which case ρ

α

satisfies the pair (Gn, Rn). 2

Unfortunately, the hierarchical subset construction is not sound. Consider this exam-
ple.

Example 4.5
The automaton shown in Figure 9 does not accept the input (ba)ω. However, the run

of the hierarchical marked subset automaton on this input is the following:

1 ({s},white)
2 (∅,white)
3 (∅,white)

b
−→H

1 ({s, g1},white)
2 ({g1},white)
3 (∅,white)

a
−→H

1 ({s, g2},white)
2 ({g2}, green)
3 (∅,white)

b
−→H

1 ({s, g1, g2},white)
2 ({g1, g2},white)
3 ({g2},white)

a
−→H

1 ({s, g2},white)
2 ({g2}, green)
3 (∅,white)

b
−→H · · ·

Since level 2 remains populated forever and turns green infinitely often, the hierarchical
construction incorrectly accepts this input. 2

In the preceding example, the problem is that the good state g2 which appears to be
permanently part of level 2 is actually a transient state. Each time an a is read, the g2

state at level 2 disappears, only to be replaced by a fresh copy of g2 which is pushed from
level 1.

To rectify this defect, Safra’s construction maintains each level of marks as a disjoint
set of nodes. The hierarchy of subsets then becomes a tree, with the set at level 1 as the
root.

Safra’s Construction Before presenting Safra’s construction, we review some termi-
nology regarding trees. A tree is a structure T = (V, vr, π) where V is a set of nodes,
vr ∈ T is a special node known as the root and for all v ∈ V − {vr}, π(v) ∈ T fixes the
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parent of the node. If v = πi(v′) for some i > 0, we say that v is an ancestor of v′. The
root vr is an ancestor of every other node. If v′ = π(v) then v is said to be a child of v′.
We assume that for any node v, all the children of v are ordered so that we can talk of
one child being to the left of another. This generates a total order on nodes—if v and v′

are nodes, we say that v < v′ if v is an ancestor of v′ or if there is a common ancestor
u of v and v′ such that v is in the subtree rooted at a child u1 of v, v′ is in the subtree
rooted at a child u2 of v and u1 is to the left of u2.

Given a Büchi automaton (A, G), with A = (S,→, Sin), Safra’s construction produces
a Rabin automaton (AG,PT G), with AG = (SG,→G, S

G
in). The automaton (AG,PT G) is

as follows:

• Each state in SG is a structure (T, σ, χ, λ) where

– T = (V, vr, π) is a tree.

– σ : V → 2S associates a set of states of A with each node in V in such a way
that:

∗ The union of the sets associated with the children of a node v is a proper
subset of σ(v).

∗ If v and v′ are two nodes such that v is not an ancestor of v′ and v′ is not
an ancestor of v then σ(v) is disjoint from σ(v′).

∗ If σ(v) = ∅, then v is the root vr.

It is not difficult to verify that the conditions imposed on the function σ ensure
that |V | can be no larger than n, where n is the number of states in S.

– χ : V → {white, green} fixes a colour for each node.

– λ : V → L is an injective function which attaches a label from the set L =
{ℓ1, ℓ2, . . . , ℓ2n} to each node. Notice that L has 2n elements.

• On reading an input a, the state (T, σ, χ, λ) is transformed to the state (T ′, σ′, χ′, λ′)
as follows:

(i) Let T = (V, vr, π). Expand the T to a tree T1 = (V1, vr, π1) as follows: For
each v ∈ V , if σ(v) ∩ G 6= ∅, add a node v′ such that π1(v

′) = v and v′ is the
right-most child of v.

(ii) Extend σ and λ to functions σ1 and λ1 over T1 as follows:

For all nodes v in V1 ∩ V , let σ1(v) = σ(v). For a new node v ∈ V1 − V ,
σ1(v) = σ(π1(v)) ∩G.

All nodes v in V1 ∩V inherit the label λ(v). For each node in V1 −V , choose a
new label from L which is not assigned to any other node. Since there 2n labels
to choose from, this is always possible—each node in V generates at most one
new child in V1 and there were not more than n nodes in V .

(iii) For every node v, apply the subset construction locally. In other words, define
a new function σ′

1 : V1 → 2S such that σ′
1(v) = δsub(σ1(v), a) for all v ∈ V1.

At this stage, we have to “clean up” T1 and σ′
1 so that the structure once again

satisfies the conditions specified for states of AG.
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(iv) For every node v ∈ V1, if s ∈ σ′
1(v) and s also belongs to σ′

1(v
′) for some smaller

node v′, v′ < v, (recall the total order on all nodes in a tree) remove s from
σ′

1(v).

(v) Remove all nodes v such that σ′
1(v) = ∅ and v is not the root vr.

(vi) For each node v such that σ′
1(v) is equal to

⋃

{σ′
1(v

′) | v = π1(v
′)}, remove all

the children of v and set χ1(v) = green. For all other nodes, set χ1(v) = white.

(vii) Let the set of nodes remaining be V ′. For v ∈ V ′, σ′(v) is that part of σ′
1(v)

which remains after discarding states which already appear to the left, as spec-
ified in step (iv) above. The label λ′(v) of a node v is retained from T1. Finally,
set χ′ = χ1.

• The initial state of AG is the tree ({vr}, vr, ∅) where σ(vr) = Sin, χ(vr) = white and
λ(vr) = ℓ1.

• The pairs table PT G = 〈(G1, R1), (G2, R2), . . . , (G2n, R2n)〉 is defined as follows:

– Ri = {(T = (V, vr, π), σ, χ, λ) | ∀v ∈ V : λ(v) 6= ℓi}.

– Gi = {(T = (V, vr, π), σ, χ, λ) | ∃v ∈ V : λ(v) = ℓi and χ(v) = green}.

The labelling procedure guarantees that the labels of new nodes added at each stage are
disjoint from the labels of the existing nodes. In other words, if a node labelled ℓi is
deleted from the tree during a transition, the label ℓi temporarily disappears from the
tree.

Thus, an entry (Gi, Ri) in the pairs table specifies the following condition. The condi-
tion Ri is satisfied if at some stage a node labelled ℓi is added to the tree and it is never
deleted henceforth. The condition Gi then says that this node turns green infinitely often.

Figure 10 describes the run generated by Safra’s construction on the input (ba)ω for
the automaton shown in Figure 9. In the figure, each node of a tree is denoted by a circle,
with the label indicated inside the circle and the associated subset written by its side.
Nodes coloured green are drawn as double circles, while white nodes are drawn as single
circles. When selecting labels for new nodes added to the tree at each stage, we have
followed the policy of using the first “free” label in L.

At the second level of the tree, nodes labelled ℓ2 and ℓ3 turn green infinitely often,
so the run satisfies G2 and G3. However, since both these labels also disappear from the
tree infinitely often, the run does not satisfy R2 or R3, thus ensuring that the automaton
rejects this input.

It is not difficult to see that Safra’s construction satisfies a property similar to the
only described for the marked subset construction:

Let ρ be a run of (AG,PT G) on an input α such that ρ(i) = (Ti, σi, χi, λi) for
all i ∈ N0. Let j, k ∈ N0 with j < k and ℓ be a label from L such that:

• For all positions i ∈ {j, j+1, . . . , k}, there is a node v in the tree Ti such
that λi(v) = ℓ.

• χj(v) = χk(v) = green and for all i such that j < i < k, χi(v) = white.
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Figure 10: A run generated by Safra’s construction

Then, for each state y ∈ σk(v), there is a state x ∈ σj(v) such that x −α[j..k−1]→∗ y
in the original automaton and, moreover, when going from x to y on reading
α[j..k−1], the original automaton goes through some good state.

Once we have this property, the soundness of Safra’s construction follows from an
argument very similar to the one described for the marked subset construction in Propo-
sition 4.2. In other words, we can show the following.

Proposition 4.6 Let (AG,PT G) be the Rabin automaton generated by Safra’s construc-
tion, corresponding to the Büchi automaton (A, G). Then, if (AG,PT G) accepts an input
α, so does (A, G).

Proof As in the proof of Proposition 4.2, we construct a finitely branching tree Tα with
an infinite set of nodes for each input α and argue that each infinite path in Tα corresponds
to an accepting run of A on α. We omit the details. 2

The completeness of Safra’s construction is shown by an argument similar to the one
described for the hierarchical marked subset construction.

Proposition 4.7 Let (AG,PT G) be the Rabin automaton generated by Safra’s construc-
tion corresponding to the Büchi automaton (A, G). If (A, G) accepts an input α, so does
(AG,PT G).

Proof Suppose (A, G) accepts α. Then, α admits a run ρ which visits G infinitely often.
We must show that the unique run ρ

α
of AG on α satisfies some entry in PT G.

For j ∈ N0, let ρ
α
(j) = (Tj , σj, χj , λj). Initially, the root vr is assigned the label

ℓ1. Since the root is never removed, the run ρ
α

satisfies R1. If it also satisfies G1 then
(AG,PT G) accepts α and we are done.
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If ρ
α

does not satisfy G1, let k1 be the last position at which the root is coloured green.
Let i1 be the first position after k where ρ, the accepting run of A on α, visits G. At this
point, a child v1 of the root comes into existence.

We know that the accepting run ρ is part of the overall subset construction maintained
by the root node. Once v1 is created, we know that ρ is also being maintained at the
first level. It would appear that the run is maintained by v1 itself, but there is a subtle
complication to be taken into account. Since we only retain the left-most copy of each
state, the run ρ may be passed on by v1 to some sibling on the left. In any case, it can
only move left a finite number of times. Let us suppose it eventually settles down at some
node v′1.

It is not difficult to verify that the node v′1 must already have been in the tree when
v1 was added. Let ℓi1 = λi1(v

′
1) be the label of v′1. Since α never dies out, v′1 will never

be deleted from the tree. In other words, ρ
α

satisfies the condition Ri1 . If it satisfies the
corresponding condition Gi1 we are done.

Otherwise, let k2 be the last time where v′1 turns green. As before, we wait for i2, the
next time ρ visits a good state, and look at the child v2 of v′1 which is created at this
point. The run ρ is copied into the subset maintained by v2 and passed on left a finite
number of times till it settles down at a node v′2. If ℓi2 is the label of v′2, ρα

must satisfy
Ri2 . If ρ

α
does not also satisfy Gi2 we push ρ down one more level.

Since there are only n levels in the tree, we cannot do this indefinitely. Thus, we must
eventually find a node v′m labelled ℓim such that ρ

α
satisfies the pair (Gim , Rim). 2

The complexity of Safra’s construction The automaton AG has 2O(n logn) states,
where n is the number of states in A. To see this, we estimate the number of bits required
to write down a typical state of AG. We have to specify the structure (T, σ, λ, χ).

Since T has at most n nodes, we can “name” the nodes {1, 2, . . . , n}, with vr = 1. The
structure (V, vr, π) can then be written down as a list of the form {π(i)}i∈{1,2,...,n}. Since
π(i) ∈ {1, 2, . . . , n} requires logn bits to write down, T can be described using n logn
bits. Similarly, λ and χ can be written as lists of length n with each entry made up of
logn bits and 1 bit, respectively.

The only catch is with σ—if we näıvely represent the function σ : V → 2S as a list of
subsets, we will need n bits to represent each entry, resulting in n2 bits overall. However,
notice that if a state s belongs to σ(v) and σ(v′) for two different nodes v and v′ it must
be the case that v is an ancestor of v′ or that v′ is an ancestor of v. Also, if s ∈ σ(v), s
must belong to σ(v′) for every ancestor v′ of v, all the way upto the root. Thus, we can
characterize the set of nodes where s appears in terms of the lowest node vs such that
s ∈ σ(vs): if s ∈ σ(vs) then s ∈ σ(v′) for any other node v′ iff v′ is an ancestor of vs. In
this way, σ can also be represented as a list of length n by matching each state s in S to
its corresponding node vs in V . Each entry in this list can be written down using log n
bits.

Since we can characterize a state of AG using O(n logn) bits, it follows that the number
of distinct states is bounded by 2O(n logn).

The number of pairs in PT G is O(n)—by construction, there is a pair (Gi, Ri) for each
label ℓi ∈ L and L contains exactly 2n elements.

By Lemma 3.4, we can simulate the Streett automaton (AG,PT G) by a Büchi automa-
ton with 2O(n logn) states. Thus, complementing Büchi automata using Safra’s construction
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results in the state space blowing up from n to 2O(n logn). Recall that for automata on
finite words, the number of states in the complement (via the subset construction) is 2O(n).
It has been shown that the bound achieved by Safra’s construction is optimal [Mi88].

Why complement Büchi automata? We have seen that if we work with Muller,
Rabin or Streett conditions, we can in fact accept all ω-regular languages using deter-
ministic automata. So, why do we bother about complementing non-deterministic Büchi
automata?

The reason is that the natural translation of logical questions into automata necessarily
introduces non-determinism. For instance, when we constructed the automaton (Aϕ, Gϕ)
corresponding to an S1S formula ϕ in Section 2, non-determinism was unavoidable in
the inductive step for handling existential quantification. This non-determinism arises
regardless of what type of acceptance condition we choose to work with. Surprisingly,
determinizing Muller or Rabin automata directly is no easier than first converting them
to Büchi automata and then applying Safra’s construction [Sa88].

Arguably, for our purposes it should suffice to complement Büchi automata— deter-
minization is a stronger construction which yields complementation as a corollary. In fact,
Klarlund [Kl91] has shown that it is possible to directly complement non-deterministic
Büchi automata without determinizing them and without sacrificing the optimal 2O(n logn)

bound achieved by Safra’s construction. However, there are applications where deter-
minization is crucial—for instance, in the game-theoretic analysis of automata on infinite
trees [GH82].

5 Discussion

Our main focus in this survey has been in describing how Büchi automata can be used to
settle decision problems in logic. On the way, we have proved some simple results about
ω-regular languages. There has also been a lot of work on the algebraic and topological
aspects of ω-regular languages which we have not even touched on. A detailed introduction
can be found in the survey [Th90].

As mentioned in the Introduction, Meyer showed in [Me75] that the decision procedure
for S1S has a non-elementary complexity. A formula of length n may generate an automa-

ton with 22···
2

states, where the tower of exponentials is of height n. In other words, the
size of the automaton cannot be bounded by a function of constant exponential height.
This result appears to make it impossible to use this elegant theory in a practical setting
for verifying properties of programs.

However, for temporal logics, it turns out that there are direct ways to construct a
Büchi automaton (Aϕ, Gϕ) recognizing Lϕ for a temporal logic formula ϕ, such that the
size of Aϕ is exponential in the length of the formula [VW86]. As shown in [VW86],
Büchi automata also provide a clean solution to the model-checking problem for finite
state systems. The model checking problem is the following—given a finite-state program
P and a temporal logic formula ϕ, do all the computations of P satisfy ϕ?

Rabin showed that Büchi’s decidability result for S1S could be extended to the logic
S2S, the monadic second order theory of the infinite binary tree [Ra69]. The logic S2S is
very powerful—for instance, it is powerful enough to embed the logic SωS, the monadic
second order theory of the infinite countably branching tree.
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Rabin’s results are proved by extending the techniques developed for automata on
infinite words to automata operating on infinite trees. These extensions are highly non-
trivial—especially the result that automata on infinite trees are closed under complemen-
tation. A number of attempts have been made to simplify Rabin’s difficult proof. A
novel and fruitful approach has been to analyze these automata in terms of infinite games
[GH82].

Recently, there has been a lot of work on lifting the theory of Büchi automata and ω-
regular languages to the setting of concurrent programs [GP92, EM93]. When dealing with
concurrent programs, it is often advantageous to regard the runs of the system as partial
orders rather than as sequences. Two actions in such a run are unordered if they occur
independently. A sequential description of a concurrent program will generate a number of
equivalent interleavings for each partially ordered run. To verify properties of a concurrent
program in terms of such a sequential description, we have to check all these equivalent
interleavings when, in principle, it should suffice to check one representative interleaving
for each partially ordered computation. By directly working with infinite labelled partial
orders rather than infinite sequences, we can avoid some of this duplication of effort. A
challenging open problem is to extend the work of [GP92, EM93] to branching structures
with concurrency, corresponding to the case of infinite trees for sequential systems.
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