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Using an exact numerical solver for 1d 
systems (known as DMRG), we can learn 
more about density functional theory 
(DFT) and find ways to make it better

Summary:
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Density functional theory (DFT) is an 
efficient method that works extremely 
well for molecules and materials....
                      ...except when it doesn’t

Strong Correlation

Predicting GapsDerivative 
Discontinuity

Transport
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Ideas for correcting these issues,
but how to test them?

HSE

GGA+U
DMFT+DFT
S-DFA

To check if they work, and for the right 
reasons, must give something up:

• Continuum
• Long-range interactions
• Three Dimensions
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Keeping the continuum and long-range 
interactions, we find 1d chemistry to be 
a good mimic of real 3d world
            (see next talk by Lucas Wagner)

Working in 1d lets us use the powerful
density matrix renormalization group
(DMRG) method...
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DMRG - a powerful numerical method:

 Essentially exact solutions

 Linear scaling in 1d

 Access entire wavefunction

 Time dependence, finite T

 1d and narrow 2d systems
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DMRG usually applied to lattice models 
(such as t-J or Hubbard)

White and 
Scalapino (2008)
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Long Range Interactions?

Obstacle: Including all pairwise 
interactions on the grid makes scaling  
Solution: 
1. No extra cost in DMRG for 
    exponential long-range interactions 

2. Fit Coulomb law to sum of exponentials

+ + . . .=

Pirvu, Murg, Cirac and Verstraete, NJP 12 025012, (2010)

N3
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How does DMRG work?

Grid sites

Many-body wavefunction
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How does DMRG work?

Freeze out all but a small 
piece of wavefunction

~
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How does DMRG work?

Solve Schrodinger 
equation exactly for 
remaining piece

H̃| ̃i = Ẽ| ̃i

~
H
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How does DMRG work?

Shift exposed region, keeping only 
the most important states in the basis

~
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How does DMRG work?

Shift exposed region, keeping only 
the most important states in the basis

~
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DMRG Demo - 1d “Helium” Atom
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Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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Model system: 1d matter

“soft Coulomb” interaction

Level I: compare exact results to   
            DFT approximations
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DMRG powerful enough to solve a chain 
of 100 stretched soft Hydrogen atoms

-200 -190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

Total electron density

-4e-04
-2e-04
0e+00
2e-04
4e-04

Magnetization

0

0.1

0.2

0.3

0.4
0 8 16 24 32

200 208 216 224 232
x

0

0.1

0.2

0.3

0.4

Exact (DMRG) Unrestricted LDA Restricted LDA

T
o

ta
l 

E
le

ct
ro

n
 D

en
si

ty

Tuesday, February 28, 12



An exact solution exposes both 
successes and failures of DFT 
and lattice models...
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E0 = �12.22 E0 = �12.12
⇠ 0.8% err

*Helbig et al. Phys. Rev. A 83, 032503 (2011).
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*Helbig et al. Phys. Rev. A 83, 032503 (2011).
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Nearly all essential physics relevant to 
e.g. strong correlation is present in 1d

Plan to benchmark many more 
DFT approximations
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Level II: study the exact 
             Kohn-Sham system

Having the exact ground state density 
means we can “invert” it to find the 
exact KS potential.
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Hohenberg-Kohn theorem: 
   KS potential is unique if it exists

n(x)

vs(x)

InvertSolve

Inversion means finding this unique
KS potential for the density n(x)
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How to perform an inversion?

n(x)

(Non-Interacting)

Trial potential

Resulting density
ñ(x)

Matches          ?n(x)

Yes
No

M
od

ify

Done

Solve

Compare

vs(x)
ṽs(x)
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It’s important to understand the KS 
wavefunction.

In a transport calculation, is it ever ok to 
replace ?

(See talk by Zhenfei Liu, today 3pm in 107B)

Also: arxiv:1201.1310, Liu et al.

G(k, !)! GKS(k,!)
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DFT in a nutshell mKBess

and makes only a 25% error on the density of a single
particle in a box. Hours of endless fun and many good
and bad properties of functional approximations can be
understood by applying this to standard text book prob-
lems in quantum mechanics, and noting what happens,
especially for more than one particle.

Kohn-Sham theory

Kohn and Sham[13] vastly improved the accuracy of
the theory by imagining a fictitious set of non-interacting
electrons that are defined to have the same density
as the interacting problem. They are still spin-1/2
fermions obeying the Pauli principle, so like in HF theory,
their wavefunction is a Slater determinant, an antisym-
metrized product of orbitals ⌅j(r), j = 1, ..., N . Insertion
into Eq. (7) yields

n(r) =
N⇧

i=1

|⌅i(r)|2. (16)

These KS electrons satisfy a non-interacting Schrödinger
equation:

⇤
�1

2
⌅2 + vS(r)

⌅
⌅j(r) = ⇥j⌅j(r), (17)

and the ⇥j are called KS eigenvalues and ⌅j(r) are KS or-
bitals. By evaluating (3) on the KS Slater determinant,
the KS kinetic energy is the sum of the orbital contribu-
tions:

TS = �1

2

N⇧

j=1

⌃
d3r ⌅�

j (r)⌅2⌅j(r). (18)

If we write the energy in terms of KS quantites:

E = TS + U + V + EXC, (19)

EXC is defined by Eq. (19) and called the exchange-
correlation (XC) energy. KS showed that one could ex-
tract the unknown KS potential if one only knew how
the terms depend on the density. Writing the Hartree
potential as

vH(r) =
�U

�n(r)
=

⌃
d3r⌅

n(r⌅)

|r� r⌅| , (20)

then

vS(r) = v(r) + vH(r) + vXC(r), vXC(r) =
�EXC

�n(r)
. (21)

This therefore produces a formally exact scheme for find-
ing the ground-state energy and density for any electronic
problem. In Fig. 2, we illustrate this with the exact KS
potential for a He atom (which is trivial to find, once
the exact density is known from an accurate many-body
calculation[14]).

!2 !1 0 1 2

!4

!2

0

v(r) vS(r)

�2

r

z

FIG. 2. Exact KS potential of He atom along z axis. Thanks
to Cyrus Umrigar[14].

Spin

In modern practice, all calculations use spin-DFT,
which allows dependences on the separate spin-densities
and produces spin-dependent KS potentials. The proofs
are similar to those of DFT[15]. Although not strictly
necessary, this produces much more accurate results for
odd-electron and other polarized systems, and allows in-
clusion of collinear magnetic fields. For the KS kinetic
energy, the spin-density functional is extracted from the
density functional via

TS[n⇥, n⇤] =
1

2

�
TS[2n⇥] + TS[2n⇤]

⇥
, (22)

because TS is a sum of contributions from orbitals of each
spin, from Eq. (18). Traditionally, a large part of XC is
separated out. The exchange energy is

EX = �1

2

⇧

�,i,j
occ

⌃
d3r

⌃
d3r⌅

⌅�
i�(r)⌅

�
j�(r

⌅)⌅i�(r⌅)⌅j�(r)

|r� r⌅|

(23)
where ⇤ =⇥, ⇤, and also satisfies a simple spin-scaling
relation. Then the correlation energy is everything else,
i.e., defined to make Eq. (19) exact[16].

IMPLEMENTATION OF DFT

Standard functionals

Practical calculations use some simple approximation
to EXC[n⇥, n⇤]. The KS equations are started with some
initial guess for the density, yielding a KS potential via
Eq. (21). The KS equations are then solved and a new
density is found. This cycle is repeated until changes
become negligible, i.e., this a self-consistent field (SCF)
calculation.
The standard approximations are very simple. The lo-

cal (spin) density approximation (often just called LDA)

PREPRINT from Burke Group archives 3

Umrigar and Gonze, PRA 50, 3827 (1994)

(figure adapted by Burke and Wagner)

In contrast to previous calculations, we 
can approach the thermodynamic limit 
and study matter

Exact KS potential
of He atom:

! Kohn-Sham gap
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Level III: self-consistent KS
              calculation with the 
              exact functional
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What is the functional?

Given a density        , computes 
the ground state energy for a 
given type of interactions

n(x)

E0 = E[n]

the functional
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Often spoken about as if it’s some 
closed-form, analytic expression...

...but this can’t be right - writing down 
the exact functional is QMA hard.*

*N. Schuch and F. Verstraete, Nature Phys. 5, 732 (2009).
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In reality, the functional is not an 
expression but an algorithm.

n(x)

InvertSolve

Key ingredient: interacting inversion

v(x)
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Similar to non-interacting inversion:

n(x)

v(x)
Trial potential ṽ(x)

Resulting density
ñ(x)

Matches          ?n(x)

Yes
No

M
od

ify

Done

Solve (DMRG)

Compare
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n(x)

v(x)
Trial potential ṽ(x)

Resulting density
ñ(x)

Matches          ?n(x)

Yes
No

M
od

ify

Done

Solve (DMRG)

Compare

Last step gives the wavefunction  [n](x)

 [n](x)
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Finally, with
 [n](x)

v[n](x)

E[n] =

= h [n]| T̂ + V̂ee +
Z

x

v[n](x)n̂(x) | [n]i

= h [n]| Ĥv[n] | [n]i
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Can also do self-consistent Kohn-
Sham with exact functional.

Given any         :

1. Invert (no interactions) 

vHXC[n](x) = vs(x)� v(x)

2. Invert (with interactions) 

3. Compute 

n(x)

v[n](x)

vs[n](x)
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Example
Kohn-Sham
Calculations
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• Also explore fundamental DFT 
   questions: 
      V-representability
      Local minima of exact functional

• Exact Kohn-Sham can be embedded
   within approximate DFT calculation 
   (partition DFT)
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Future plans:

• Continuum DMRG for 1d cold 
   atom experiments

• Apply 1d lessons to 3d 
   approximate functionals

• Answer questions about effective
   models (such as Hubbard) 
   e.g. physics of screening
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For more information, please see the 
following preprints:

      arxiv:1107.2394
      arxiv:1202.4788
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