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Abstract

In this paper we present a possible quantum theory of dark matter.

1 Introduction

In this paper we discuss a possible quantum theory of dark matter. Dark
matter gets its name from the fact that it does not interact well with ordinary
matter or antimatter and its existence is concluded from its gravitational
influence, such as bending of light from far away galaxies.

We therefore start with the assumption that dark matter lives in a Hilbert
space orthogonal to the one in which ordinary matter/antimatter resides.
One possibility is to consider L2 space of a measure singular with respect to
the Lebesgue measure, which is what we do in this paper.

The problem then is to identify the notion of a derivative associated with
singular measures to represent the kinetic energy operator on such a Hilbert
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space of states. We could take fractional derivatives coming from a metric.
The difficulty with such a choice is that for functions in L2, of the measure in
question, such fractional derivatives may not even exist almost everywhere
with respect to the measure.

We therefore consider a measure theoretic derivative here which is more
intrinsic to the measure.

We further consider the Hamiltonian with repulsive potentials, we choose
repulsive potential to explain the uniformly present dark matter in the vac-
uum region of the universe, and identify the spectrum of N dark particles.

The particles are assumed to have a mass and are assumed to interact via
a coulomb pair potential among themselves, effective in an ambient space.

As far as we know the formulation we have given here is new and does
not appear in the literature.

2 Some Mathematical Preliminaries

We present here some measure theory needed and define the Ayyer-Krishnapur
[1] Laplacian for the space we consider and for particular cases identify its
spectrum.

Consider a finite positive measure µ on R and the Hilbert space L2(R, µ).
Since µ is finite, L1(R, µ) ⊂ L2(R, µ) by an application of Cauchy-Schwarz
inequality. When f is non-negative we can define the distribution functions

Φf (x) =

∫ x

−∞
f(x)dµ(x), f ∈ L2

+(R, µ),

where Φf (x) is now a non-negative bounded measurable function and there-
fore is also in L1(R, µ)∩L2(R, µ). The association f → Φf is unique, since a
finite positive measure and its distribution function are uniquely associated
to each other. One can then extend this definition to real valued f presev-
ing the uniqueness of f → Φf (by taking the positive and negative parts
respectively) and then to complex valued f by linearity. Thus, associated
with every f ∈ L2(R, µ), there is a finite complex measure dνf = f(x)dµ(x),
such that the Radon-Nikodym derivative of νf with respect to µ is f . This
association of f → Φf is also unique, since the real and imaginary parts are
uniquely associated to those of f .

Given f ∈ L2(R, µ) consider the function Φf defined above, this function
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is the ”distribution function” of νf in the sense that

Φf (x) = νf ((−∞, x]), x ∈ R.

In [1] Ayyer-Krishnapur use this property to define a measure theoretic
Laplacian of functions in L2(R, µ) as follows.

This existence of Φf ∈ L2(R, µ) associated to any f ∈ L2(R, µ) allows us
to define a quadratic form

Eµ(Φf ,Φg) =

∫
f(x)g(x)dµ(x), f, g ∈ L2(R, µ). (1)

Note that Φf is linear in f and its definition it is sesquilinear and we see
that

E(Φf ,Φg) =

∫
fg dµ =

∫
gf dµ = Eµ(Φg,Φf ),

so it is symmetric and positive definite, since Eµ(Φf ,Φf ) ≥ 0.
Suppose Φn is a sequence in L2(R, µ) with the property that there is a

fn ∈ L2(R, µ) with Φn = Φfn and Φn converges to Φ in L2(R, µ). To show
that Eµ is closed, we need to show that if such fn converges, say to f , then
Φ = Φf .

We first note that∫
|Φn(x)− Φf (x)|2 dµ(x) ≤

∫
|
∫ x

(fn(y)− f(y)) dµ(y)|2 dµ(x)

≤
∫ (∫ x |fn(y)− f(y)| dµ(y)

)2
dµ(x)

≤ µ(R)2‖fn − f‖22.

Therefore if fn → f , then Φn → Φf , but Φn converges to Φ by assumption,
so by uniqueness of the limit Φ = Φf .

This shows that Eµ is also closed. Now combining these facts with Theo-
rem VIII.15, [5], we have the following

Proposition 2.1. Let µ be a positive finite measure on R and let Eµ be
the quadratic form defined in equation (1). Then Eµ is a closed, symmetric
positive definite form. There is a unique self-adjoint operator ∆µ associated
with Eµ such that

Eµ(Φf ,Φg) = 〈Φf ,∆µΦg〉.
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Remark 2.2. Since functions of bounded variation give finite signed mea-
sures, the form domain of Eµ is expected to be the collection of L2(R, µ)
functions such that the real and imaginary parts are of bonded variation with
the further property that the finite complex measure associated with them (not
necessarily uniquely) are absolutely continuous with respect to µ and have a
their Radon-Nikodym derivative in L2(R, µ).

We shall now extend the definition of Eµ to σ-finite positive measures.
For doing this we need to modify the definition of the distribution function
of a measure slightly from the standard definition. The reason we can do
this will be explained shortly.

Recall that the definition of Eµ above came from identifying complex
measures which are absolutely continuous with the given µ such that they
have L2(µ) density with respect to µ. We will preserve this property in the
definition of the distribution function.

If µ is σ-finite and f ∈ L1(R, µ), in general the ’standard’ distribution
function, namely,

Φf (x) =

∫ x

−∞
f(y) dµ(y)

is well defined, but will no longer be in L2(R, µ), even for compactly sup-
ported f since Φf will be a constant in [a,∞), for any a with supp(f) ⊂
(−∞, a]. Therefore we give a new definition:

Let P be a partition of R as a union of intervals ∪∞i∈Z(ai, bi] such that
µ([ai, bi]) <∞, ∀i.

Definition 2.3. Suppose f ∈ L2
+(R, µ) Then we define the function Φf,P

associated to f by

Φf,P(x) =

∫ x

ai

f(y) dµ(y), x ∈ (ai, bi], i ∈ Z. (2)

When f ∈ L2(R, µ), as before, then using the Jordon decomposition f =
Re(f)+−Re(f)−+ i(Im(f)+− Im(f)−), in terms of the positie components
of the real and imaginary parts of f , we extend the definition Φf as:

Φf (x) = ΦRe(f)+,P(x)− ΦRe(f)−,P(x) + iΦIm(f)+,P(x)− iΦIm(f)−,P(x). (3)

Then Φf,P is well defined for any function f ∈ L2(R, µ) and it is in
L2
loc(R, µ). It is also clear from the arguments for the finite µ case, that if
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f has compact support then so does Φf,P and in that case it is uniquely
associated to f .

We define

Eµ,P(Φf,P ,Φg,P) =

∫
f(x)g(x)dµ(x), f, g ∈ L2(R, µ). (4)

This quadratic form is well defined on the set of functions Dµ of bounded
variation having compact support such that the densities of the associated
complex measures are in L2(R, µ).

Lemma 2.4. The quadratic form defined on Dµ ×Dµ is closed.

Proof: We will show that if φn = Φfn,P , fn ∈ L2(R, µ), Dµ 3 φn → φ in
L2(R, µ), and Eµ,P(φn− φm, φn− φm)→ 0, then there is a f ∈ L2(R, µ) with
fn → f in L2(R, µ) and φ(x) = φf,P(x) almost every x w.r.t. µ.

First we note that Eµ,P(φn−φm, φn−φm)→ 0,m.n→∞ implies that fn
is Cauchy in L2(R, µ) so it converges to some f there. Consider, Φf,P which
is well defined for almost every x ∈ R. Then it is clear that since, fn → f in
L2(R, µ),

sup
x∈(ai,bi]

|Φfn,P(x)− Φf,P(x)| ≤ µ((ai, bi])
2

∫
|fn − f |2(x) dµ(x), ∀i ∈ Z.

Therefore, using subsequences that converge almost everywhere, we see that
φ and Φf,P agree almost everywhere on each (ai, bi] for each i showing that
they are the same.

In the case when we consider Rn and the product measure µ = ×n1ν,
we can similarly define, Eµ, first taking product vectors f = ×ni=1fi, then
their finite linear combinations and then extend the quadratic form Eµ to its
natural domain.

Definition 2.5. The Ayyer-Krishnapur Laplacian ∆µ on L2(Rn, µ) asso-
ciated with a finite positive measure µ is defined as the unique self-adjoint
operator associated with Eµ. In the case when the measure is not finite but
σ-finite, then the operator associated with (µ,P) is the unique self-adjoint
operator ∆µ,P associated to Eµ,P .

Remark 2.6. In general the complex measure associated to Φf,P is the same
as fµ, independent of P, however the operator ∆µ,P will in general depend
on P. This forces us to make a choice below for our application.
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In the case when µ is an atomic measures on R, we consider the parti-
tion P1 : Sµ = ∪x∈Sµ{x} consisting of singletons in the support Sµ = {x :
µ({x}) 6= 0} of µ. In the theorem and the following corollary we drop the
subscript P1 for ∆µ.

Theorem 2.7. Suppose µ is an atomic measure, then the self-adjoint oper-
ator associated with Eµ,P1 is given by

∆µ =
∑
x∈Sµ

1

µ({x})2
|ex〉〈ex|, on L2(R, µ),

where {ex} is the orthonormal basis for `2(Z, µ), with ex(y) = 0, y 6= x.

Proof: First note that the orthonormal basis ex is given by the sequence
ex(y) = 0, y 6= x, ex(x) = 1

µ({x})
1
2

. Therefore if we find the fx such that

ex = Φfx,P1 , then we can compute the quantities

Eµ,P1(ex, ey), x, y ∈ Z,

thus getting the matrix ∆µ,P1 explicitly in this basis. A simple computation
shows that the required fx is just 1

µ({x})ex. Therefore computing the matrix
elements we get

〈ex,∆µey〉 = Eµ,P1(ex, ey) =

{
1

µ({x})2 , x = y,

0, x 6= y.

Clearly when µ is the counting measure on Z, then the above theorem
trivially gives:

Corollary 2.8. In the case µ is the counting measure on Z, the Ayyer-
Krishnapur Laplacian on `2(Z) is the I operator.

3 Hilbert space and Hamiltonian of Dark par-

ticles

In this section we discuss the quantum states of dark particles and their
dynamics. We begin with a set of postulates:
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Postulate 3.1. The configuration space of dark particle is the support of an
atomic measure in R3 and the support is discrete.

Postulate 3.2. The Hilbert space of quantum states of a dark particle is
L2(R3, µ), µ as in Postulate 3.1. The particle has mass m and its kinetic
energy is given by the Ayyer-Krishnapur Laplacian hµ

2m
∆µ associated with µ,

where hµ is an appropriate Planck constant relevant for µ.

In the following we will make the assumption:

Hypothesis 3.3. We will take the measure µ in postulate 3.1 to be µ = ×3
i=1ν

where ν is the counting measure on Z. Thus the configuration space of a single
dark particle is assumed to be Z3. In this case L2(R3, µ) = `2(Z3). For this
case we will set hµ = h̃.

4 N body Spectrum

We first compute the spectrum of two particle Hamiltonian and then discuss
the N particle case. The Hamiltonian is assumed to consist of the kinetic
energy part 1

2m
∆µ and the potential is assumed to be repulsive coulomb, of

strength D between the pair. Other than this we do not assume any forces
affecting the pair of particles. Since the space is discrete we need to rule
out the possibility of the two particles occupying the same site since that
would involve infinite pair interaction, which will instantaneously move the
particles apart.

In view of the Hypothesis 3.3 , the two particle Hilbert space is `2(Z3)⊗
`2(Z3). We denote the standard orthonormal basis here by {δx ⊗ δy, x, y ∈
Z3}, where {δx, x ∈ Z3} is the standard basis for `2(Z3). We denote the
projection onto the subspace generated by δx ⊗ δy by P(x,y). We set Pdiag =∑

x∈Z3 Px,x. We will continue to write I ⊗ I on `2(Z3)⊗ `2(Z3) as I. We take

|x| =
√
x21 + x22 + x23, x ∈ Z2.
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Then the Hamiltonian H for this case is

H = (I − Pdiag)(
h̃

2m
I × I + I × h̃

2m
I) +

∑
x,y∈Z3

D

|x− y|
P(x,y)(I − Pdiag) (5)

=
h̃

m
(I − Pdiag) +

∑
x 6=y∈Z3

D

|x− y|
P(x,y). (6)

=
∑

x 6=y∈Z3

(
1

m
+

D

|x− y|

)
P(x,y). (7)

Then we immediately see that :

Theorem 4.1. The spectrum of the two particle Hamiltonian is given by

σ(H) =
{ h̃
m

+
D√
L

: L 6= 4a(8b+ 7), L, a, b ∈ N
}
.

Proof: . It is clear that the eigenvalues of H are the numbers H(x, y) =
h̃
m

+ D
|x−y| with the corresponding eigenvectors δx⊗ δy, x 6= y. Since x, y ∈ Z3

and a theorem of Legendre ([3], 20.10), specifies that a sum of squares of
three integers can take all positive integer values except 4k(8l + 7), k, l ∈ N,
the theorem follows.

In the case of N particles we recognize that the Hilbert space cannot have
states where any pair of particles occupy the same position, so we use the
following notation for ease of writing the Hamiltonian in this case. Let

Z3N
# = {(x1, . . . , xN) ∈ Z3N : xi 6= xj, i 6= j}.

Then the N particle Hilbert space is `2(Z3N
# ) and the N particle Hamiltonian

is :

HN =
h̃

2m

∑
x∈Z3N

#

Px +
∑
x∈Z3N

#

∑
1≤i<j≤N

D

|xi − xj|
Px. (8)

We can say something about the essential spectrum of HN , these are
threshold points given by the spectrum of lower particle Hamiltonians.

Theorem 4.2. Consider the N-particle Hamiltonian HN given by equation
(8). Then the spectrum is pure point and σ(HN) ⊂ σess(HN+1), N=1,2,. . . .
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Proof: SinceHN is a diagonal operator in the basis for `2(Z3N
# ), the spectrum

is pure point. It is clear that when N = 1, the particle is free and has
Hamiltonian H1 = 1

2m
I and so σ(H1) = σess(H1) = { 1

2m
}.

We have

HN+1 =
∑

xN+1∈Z3

∑
x∈Z3N

#

xj 6=xN+1,∀j

(
Nh̃

2m
+

∑
1≤i<j≤N

D

|xi − xj|

)
Px ⊗ PxN+1

+
∑
y∈Z3

∑
x∈Z3N

#

xj 6=y,∀j

(
h̃

2m
+
∑

j<N+1

D

|y − xj|

)
Px ⊗ Py

=
∑

xN+1∈Z3

HN(xN+1)⊗ PxN+1
+
∑
y∈Z3

V (y)⊗ Py

=
∑
y∈Z3

(HN(y)⊗ Py + V (y)).

The operators HN(y) ⊗ Py and V (y) commute, for each y ∈ Z3 and given
any x ∈ Z3N

# , we take y : y 6= xj,∀j, then

λ(x) =
∑

1≤i<j≤N

D

|xi − xj|

is an eigenvalue of HN and

λ(x) +
∑

1≤j≤N

D

|y − xj|

is an eigenvalue of HN+1. Now taking |y| → ∞, we see that these eigenvalues
converge to λ(x). Thus all the eigenvalues of HN are in the essential spectrum
of HN+1.

The N body spectrum for N ≥ 3 is unclear, so we leave it as a problem.

Problem 4.3. Determine the N body spectrum for N ≥ 3.

There are several question that come up we leave with one such:

Problem 4.4. What is the thermodynamics of the particles subjected to the
theory here?
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Once we have the above N particle Hamiltonian, the dynamics is assumed
to be governed by the Schrödinger equation, which in this case, will result
in only change of phases of eigenvectors as time varies, since the spectrum is
pure point.

5 Discussion

While in the earlier sections we presented a mathematically precise theory,
in this section we present an informal discussion and some questions.

The dark energy is about 68.3% and dark matter about 26.8% of the
composition in the Universe. These numbers indicate that the total energy
of the dark particles as per this model given by

〈ψ,Hψ〉 =
Nh̃

2m
+D

∑
1≤i<j≤N

1

|xi − xj|
,

should give the ratio of the dark energy to dark matter content.
If we assume that the universe is bounded then assuming further that the

dark particles collectively assume a position of minimum total energy, which
requires them to be as far away from each other as possible, in the absence
of compelling external gravitational forces, so they will be uniformly spread
out in the universe. This appears to be the case in observations. See Deb et
al [2].

There is a body of work by Laurent Nottale, specifically the ’scale rela-
tivity’ based work to explain dark matter see Nottale-Celerier [4]. This body
of work however is unconnected with our work presented here.

If we assume that they are at equal distance from each other, L, then the
total energy becomes.

〈ψ,Hψ〉 =
Nh̃

2m
+D

(N − 1)!

L
.

We assumed here that ψ is the state where the N particles assume such a
configuration.

If we measure the above energy in units of the mass of the dark particle,
then We need some parameters to compute the constant mD.

We note a few features about the quantum theory presented here for dark
matter. Firstly there is no uncertainty for the states since the eigenstates
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correspond to constant momenta. The computation of energy is classical,
once we know the potential function the energy in a given configuration of
the particles is computed.

The second feature is the fact that in view of the repulsive nature of the
pair interactions, the particles as a whole tend to stay away from each other
and in a finite sized universe (such as ours), they should be uniformly diffused
in space (in the absence of gravity). On the other hand in large galaxies
where there is a compensatory gravitational pull, (which is not included in
this paper) the density of the dark matter is expected to be larger in the
centre of the galaxy than at the outskirts.

The particles subjected to this quantum mechanics change energy by
physically moving to another ’location in their configuration space’. We can
think of the ’space of dark particles’ being in the ambient space R3 occupied
by Baryons and the dark particles appear to ’teleport’ in the ambient space
when their energy is changed, because they live in a discrete space and from
the structure of the Hamiltonian any change in energy happens only by a
shift in the relative position of a pair of particles.

This fact raises a serious question about the consistency with the con-
straints imposed by relativity (our theory here is however non-relativistic).

If relativity were to apply, then we may have to demand that there is
an upper bound on the amount of energy the particles can gain or lose in a
given period of time. If the change position of a pair of dark particles is ∆x
in a period of time ∆T , and involves a shift in position from x to y, then we
must have

|x− y|
∆T

≤ c,

where c is the speed of light. This constraint would be natural if the physics of
dark particles is consistent with relativity. This then manifests as a constraint
on the change in energy possible in a given period of time, since such a change
can come only by a shift in position. This feature may be exploited to suggest
an experiment to test the validity of this theory.

The mechanism by which the particles subjected to the theory presented
here lose energy, what form it takes, is unclear as they are not assumed to
couple to Baryons, Leptons and other ’normal’ matter in any way. This is a
question to think about.

Another feature with this theory is the lack of specific ’statistics’ though
there is a natural ’exclusion principle’ built in. As of now there does not
seem to be a need for a ’spin-statistics’ type theorem.
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Coupling gravity on a collection of particles subjected to the above theory
should also be interesting to study, since the configuration space is discrete.
There should be quantum jumps of the particles even in the case of classical
gravity.

The above discussion, makes us believe that the time of big-bang perhaps
initially dark matter was created causing the inflation which expanded the
universe rapidly and there was no distinction between ’quantum’ and ’classi-
cal’ at that stage, subsequently the production of baryons started and more
complex physics emerged with their creation.

Overall the theory presented here should give new phenomena, however
all this is only if experimental observations confirm that indeed the dark
particles behave as per this theory and this is big ’IF’.
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