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Let Ω be a bounded open set in IRN , N ≥ 2. The simplest example
of nonlinear (and variational) boundary value problem is the Dirichlet
problem for the p–Laplace operator, with 1 < p < N ,

(1.1)

{
−div

(
|∇u|p−2∇u

)
= f(x), in Ω;

u = 0, on ∂Ω;

so that the growth of the differential operator is p − 1. The classical
theory of nonlinear elliptic equations states that W 1,p

0 (Ω) is the natu-
ral functional spaces framework to find weak solutions of (1.1), if the
function f belongs to the dual space of W 1,p

0 (Ω).
This approach fails if p = 1.
On the one hand, if p > 1, for the model problem (1.1), the existence

of W 1,p
0 (Ω) solutions also fails if the right hand side is a function f ∈

Lm(Ω) (m ≥ 1) which does not belong to the dual space of W 1,p
0 (Ω):

it is possible to find distributional solutions in function spaces “larger”
than W 1,p

0 (Ω), but contained in W 1,1
0 (Ω) (see [1], [2]).

To be more precise, in this paper, we will present some existence re-
sults of W1,1

0 (Ω) distributional solutions (not so usual in elliptic prob-
lems) for nonlinear elliptic boundary value problems of the type

(1.2)

{
A(u) = f(x), in Ω;
u = 0, on ∂Ω;

where

(1.3) f ∈ Lm(Ω), m ≥ 1,

and A is the operator, acting on W 1,p
0 (Ω), A(v) = −div (a(x, v,∇v)) .

We assume the standard hypotheses on a : Ω × IR × IRN → IRN .
The simplest example is given by the differential operator A(v) =
−div(|∇v|p−2∇v), appearing in (1.1).

The existence of W 1,1
0 (Ω) solutions, instead of W 1,p

0 (Ω) or W 1,q
0 (Ω),

with 1 < q < p, solutions of the boundary value problem (1.2) is a
consequence of the poor summability of the right hand side, even if the
“growth” of the operator A is not zero, but p− 1 > 0.
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Existence of solutions for problem (1.2) with nonregular right hand
side, for general nonlinear problems, are contained in [1], [2]; in parti-
cular, we recall the following results.

Theorem 1.1. Let m = 1 and 2 − 1
N

< p < N. Then there exists a

distributional solution u ∈ W 1,q
0 (Ω), q < N(p−1)

N−1
, of (1.2); that is∫

Ω

a(x, u,∇u)∇v =

∫
Ω

f v, ∀v ∈ W 1,∞
0 (Ω) .

Observe that N(p−1)
N−1

> 1 if and only if p > 2− 1
N

.

Theorem 1.2. Let 2− 1
N

< p < N . If

(1.4)

∫
Ω

|f | log(1 + |f |) <∞,

then there exists a distributional solution u ∈ W
1,

N(p−1)
N−1

0 (Ω) of (1.2).

Theorem 1.3 (Calderon-Zygmund theory for infinite energy solutions).
If f ∈ Lm(Ω), N

N(p−1)+1
< m < Np

pN+p−N = (p?)′, p > 1 + 1
m
− 1

N
,

then there exists a distributional solution u ∈ W
1,(p−1)m?

0 (Ω) of (1.2).

We will show the existence of W 1,1
0 (Ω) distributional solutions as con-

sequence of the fact that we improve the existence results of Theorem
1.2 and Theorem 1.3 in some borderline cases.

2. New existence results in W 1,1
0 (Ω) in collaboration with

Thierry Gallouet ([3])

Theorem 2.1. Let f ∈ Lm(Ω), m = N
N(p−1)+1

, 1 < p < 2 − 1
N
. Then

there exists a distributional solution u ∈ W 1,1
0 (Ω) of (1.2).

Theorem 2.2. Assume (1.4) and p = 2 − 1
N
. Then there exists a

distributional solution u ∈ W 1,1
0 (Ω) of (1.2).
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