
The goal of this course is to present a general overview of
Quantum Probability with emphasis on open challenges and applications .

1) Emergence of quantum theory from classical probability .

Goal : to illustrate the idea that QP is not a generalization,
but a deeper level of understanding of classical probability.

1a) Orthogonal polynomials and the quantum decomposition of
classical
random variables with all moments.

1b ) Deduction of generalized commutation relations from commutativity
and one–to–one correspondence between quantum theories and equiva-

lence
classes of probability measures.

1c ) The classical Bernoulli process and the probabilistic meaning of
the

q–deformation parameter: birth of the q–q–bit.

1d ) The probabilistic origins of Boson Fock space and its interacting
generalizations .

1e ) An open problem in classical probability solved with quantum
probabilistic thechniques.

2) Stochastic independences and central limit theorems (CLT).

Goal : to illustrate the infinitely many notions of stochastic independence
and the corresponding central limit theorems, as well as their functional
formulation , that gives rise to the quantum fields (white noises).

2a) The singleton condition in CLTs and the role of pair partitions .

2b ) The strict singleton condition and the equivalence between CLTs
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and entangled ergodic theorems.

2c ) Central limits of Bernoulli processes: Bosons, Fermions, various forms
of

q–deformations.

2d ) Singleton but not strict singleton independences: Monotone, Boolean
.

2e ) Non singleton independences.

2d ) Notions of Gaussianity.

2e ) Functional CLTs and quantum fields.

2f ) Axiomatic approaches to stochastic independences.

3) Statistical dependences and Markovianity.

Goal : to describe Markovianity as prototype form of statistical depen-
dence .

To explain the principle differences between classical and quantum con-
ditioning .

3a) Markov chains and Markov fields on graphs: constructive
approach .

3b ) Conditioning. Markov chains and Markov states: structure theory .

3c ) Non triviality of Fermi Markov states.

3d ) Expected Markov processes and semi–groups.

4) Basic ideas of the stochastic limit of quantum theory (SLQT).

Goal : to illustrate how the basic quantum noises, White Noise Hamilto-
nian
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Equations (WNHE) and Stochastic Differential Equations (SDE) arise
from physics

through the stochastic limit of quantum theory.

4a) Slow and fast observables: emergence of WNHE from usual
Hamiltonian Equations. Equivalence of first and normally ordered second
order WNHE with SDE.

4b ) Markov semi–groups of stochastic limit type. The interaction graph
of a Markov semi–group. Classical sub–processes of quantum processes .

4c ) The similarity principle and non–equilibrium quantum field theory .

4d ) Short description of Level (II) (low density) and Level (III)
(strongly non–linear effects) problems in SLQT.
Emergence of the non–crossing diagrams in physics.

5) Non linear quantization .

Goal : to describe the attempts made in the past 15 years to answer the
question:

if all, classical and quantum, SDE are covered by 1–st and nor-
mally

ordered 2–d powers of white noise, what about higher order
WNHE?

5a) Quadratic quantization, sl(2,R), renormalization ,
emergence of the no-go theorems, connections with infinite divisibility ,
the quadratic quantization functor.

5b ) Quantization of higher powers of white noise, ew renormalization
and the Virasoro–Zamolodchikov hierarchy.

5c ) Renormalization and central extensions (2), cohomology of
∞–dimensional Lie algebras.

5d ) Interplay between infinite divisibility and non–linear quantization :
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the Galilei algebra, C∗–2d–quantization.

6) Public lecture, colloquium style (1 h).

(if there is sufficient interest to justify such a lecture)

Non–Kolmogorovian probability

Goal: to explain how the study of the foundational problems
of
quantum mechanics led to the conclusion that ’non–Kolmogorovian’ prob-

abilities
exist in physics and how this idea was developed in analogy with non

–Euclidean
geometries , thus introducing ’statistical invariants’ in analogy with
geometrical invariants and a unifying set of axiom that allows to deduce
(in a non–trivial way, as far as the q–model is concerned) the known
models as well as new ones. Examples of ’non–Kolmogorovian’ statistical

data
outside quantum physics will be discussed.
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