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1. CLUBS IN ODD TOWN AND EVEN TOWN

1.1. Statement of the odd town club problem. Once upon a time, in the city state of

Odd Town, there lived n residents. They formed clubs, subject to the following (admit-

tedly odd) rules:

• Each club consists of an odd number of residents.

• The number of members common to two different clubs is always even.

Note that the second condition allows two clubs to be disjoint (after all, zero is an even

number). Note also that the two conditions together imply that two different clubs cannot

have the same set of members.

The question is: what is the maximum number of clubs that they could form?

1.2. Examples of clubs in odd town. Let us identify the set of residents with [n], the set

of all positive integers not exceeding n. Taking the clubs to be all singleton subsets of [n],

the residents of odd town could obviously have formed n clubs. For n even, they could

also have taken the clubs to be all subsets of cardinality n − 1. For n = 6 for instance,

here is yet another way in which they could have formed 6 clubs:

(1) {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}

1.3. The odd town club theorem. While there seem to be many different ways in which

the n residents of odd town could have formed n clubs, is it possible that they could have

done better and formed more than n clubs? It turns out that it is not:

Theorem 1. No more than n clubs can be formed under the odd town rules in §1.1.

1.4. The set up and idea of the proof. We represent subsets of [n] as n-tuples (n × 1

column matrices): the jth entry is either 1 or 0 depending upon whether or not j is an

element of the subset. The six clubs in (1) are, for instance, represented as columns of

the following matrix: 

1 1 1 1 1 0

1 1 1 1 0 1

1 0 0 0 1 1

0 1 0 0 1 1

0 0 1 0 1 1

0 0 0 1 1 1


Towards the proof of the theorem, let us suppose that we have formed m clubs according

to the rules of §1.1. We want to show that m ≤ n. Choosing F to be an arbitrary field,

we may think of the clubs as elements of Fn, where Fn is the vector space consisting

of all n × 1 column vectors with entries in F. If we can show that the m elements of Fn

corresponding to the m clubs are linearly independent (for an appropriate choice of F), it

would follow that m ≤ n, since the dimension of Fn as a vector space is n.
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1.5. The standard bilinear form. We have a natural symmetric bilinear form on Fn:

(a, b) := a1b1 + · · ·+ anbn = atb = bta for a and b in Fn

where we’ve denoted by aj, 1 ≤ j ≤ n, the entries of a, by at the transpose of a, and by atb

the usual matrix product of at and b.

For a in Fn, let ϕa denote the linear functional on Fn given by b 7→ (a, b).

1.6. Proof of the odd town theorem. We choose F to be the field of two elements. Let

c1, . . . , cm be the n×1 column vectors (elements of Fn) corresponding to the m clubs, and

let λ1c1 + · · · + λmcm = 0 be a linear dependence relation among them. Fix j, 1 ≤ j ≤ m,

and apply the linear functional ϕj := ϕcj to both sides of this relation. We observe that

ϕj(cj) = 1 (since each club has an odd number of members) and ϕj(ci) = 0 for i 6= j

(since between two distinct clubs there are evenly many members in common). Applying

ϕj thus gives λj = 0. Since j was arbitrary, this proves the linear independence of cj,

1 ≤ j ≤ m, and the proof of Theorem 1 is complete. 2

1.7. The even town club problem. There lived n residents in the city state of Even
Town. Like their neighbours in Odd Town, they too formed clubs. But, true to their

name, each of their clubs had evenly many members. Here are the rules they followed:

• Each club has evenly many members. (Being mathematically minded, the resi-

dents of this strange town even allowed a club to have no members at all!)

• The number of members common to two different clubs is always even. In partic-

ular, the clubs could be disjoint.

• Two different clubs cannot have the same set of members.

The question once again is: What is the maximum number of clubs that they could

form?

1.8. Examples of clubs in even town. Perhaps surprisingly, the slight alteration in

the rules allows for far many more clubs to be formed in even town (compared to the

situation in odd town). Suppose that n is even. Put n = 2k, and imagine the n residents

to consist of k couples. For every subset of k, we form a club consisting of all the couples

belonging to that subset. It is easy to see that these clubs satisfy the required conditions.

Thus we have formed 2k = 2
n
2 clubs. If n is odd, by excluding one resident from all clubs

and following the previous construction with the remaining n− 1 residents, we can form

2
n−1
2 clubs.

1.9. The even town club theorem. For k a real number, let bkc denote the greatest

integer not exceeding k.

Theorem 2. No more than 2b
n
2
c clubs can be formed under the even town rules in §1.7.
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PROOF: As in the proof of Theorem 1, we identify clubs with elements of Fn, where F is

the field of two elements. Suppose that we have formed m clubs according to the rules

in §1.7. We will prove that m ≤ 2b
n
2
c.

The key observation is the following: the even town rules imply that for any two clubs

c and c′ (including the case when c = c′) we have (c, c′) = 0 (where (c, c′) is the standard

bilinear product of c and c′ as in §1.5). Thus the clubs span an isotropic subspace of Fn

(with respect to the standard bilinear form). (See items (2) and (3) in §4 for review of the

definition of isotropic subspaces and the basic fact about how large they can be that is

used in this proof.) The standard form being non-degenerate, the maximal dimension

of an isotropic subspace is bn2 c. The cardinality of the space spanned by the clubs (and

hence that of the clubs themselves) is thus bounded above by 2b
n
2
c. 2

2. THE GRAHAM-POLLAK THEOREM

2.1. The complete graph Kn. Let Kn denote the complete graph on n vertices. Complete

graphs on three, four, and five vertices are depicted below:

• •

•

•

•

•

•

1

3

2

4

•

•

•

•

•

2.2. Decompositions of the complete graph. A decomposition of Kn is a “partition”

into complete bipartite subgraphs: the set of edges of Kn is partitioned into those of the

subgraphs; the same vertex could be part of more than one subgraph. Here are two

examples of such partitions of K4:

•

•

• •

• •

•

•

1

3

1 2
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4
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•
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•
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1 1
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Here is a third example:

•

•

•

• •

•

• •

•
43

1 2 1

3

2

3

2
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Partitioning the edge set into singletons is also a valid decomposition.

2.3. Statement of the theorem. The following question about decompositions is moti-

vated by applications to networks and communications:

What is the least number of complete bipartite subgraphs into which the

complete graph Kn on n vertices can be decomposed?

Note that we have a special decomposition of Kn into n− 1 complete bipartite subgraphs

as follows. Identify the vertex set of Kn with [n]. For every j, 1 ≤ j < n, let Bj be the

subgraph consisting of all edges (j, k) with k > j. For n = 5, here is how the Bj look:

•

•

•

•

•

1

5

2

3

4

•

•

•

•

5

2

3

4

• •

•

5 3

4

•

•

5

4

Can we somehow manage to obtain a decomposition of Kn with fewer than n−1 complete

bipartite subgraphs? No, we cannot:

Theorem 3. (GRAHAM-POLLAK, 1972) In any decomposition of Kn, the complete graph on
n vertices, there are at least n− 1 complete bipartite subgraphs.

We discuss three proofs in the three subsections below, all based on linear algebra. First

we fix some notation to be used commonly in the proofs.

2.4. Notation to be used in the proofs. Let G be a general graph. The notion of a

decomposition of G into complete bipartite subgraphs is defined in the same way as

is done for the complete graph Kn above. Let G1, . . . , Gm be the complete bipartite

subgraphs in a decomposition of G. Let Pj and Qj be the two “parts” in Gj, 1 ≤ j ≤ m.

Let pj and qj be the characteristic (column) vectors of Pj and Qj respectively in Rn (where

we identify the vertex set of G with [n] in some arbitrarily fixed way).

Let A be the adjacency matrix of G and Aj that of Gj, 1 ≤ j ≤ n. We have:

• A = A1 + · · ·+Am (because G1, . . . , Gm form a decomposition of G)

• Aj = pjq
t
j + qjp

t
j

2.5. Proof by Twerberg, 1982. Take G to be the complete graph Kn on n vertices. By

way of contradiction, suppose that m < n−1. Let p denote the element of Rn each of whose

components is 1. Consider the subspace V := {v ∈ Rn | ptv = 0, ptjv = 0 ∀ 1 ≤ j ≤ m}. By

our hypothesis on m, it follows that V 6= 0.

Choose v 6= 0 in V . Let v1, . . . , vn be the components of v. Then:

• On the one hand, vtv = v21 + · · ·+ v2n 6= 0 (since v 6= 0).
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• On the other, vtv = (v1 + · · ·+ vn)
2− 2

∑
1≤r<s≤n vrvs. Observe that v1 + · · ·+ vn = ptv

and that
∑

1≤r<s≤n vrvs =
∑m

j=1(p
t
jv) · (qtjv) (since G1, . . . , Gm form a decomposition

of Kn). Since ptv = ptjv = 0 by choice of v, we conclude that vtv = 0.

We thus have a contradiction, and the proof is complete. 2

2.6. Proof by Peck, 1983. Take G to be the complete graph Kn on n vertices. Then

In + A = Jn, where In is the n× n identity matrix, A is the adjacency matrix of G, and Jn

is the n×n matrix all of whose entries are 1. Since A = A1+ · · ·+Am (as observed above),

we have In + (A1 + · · ·+Am) = Jn.

Write Aj = pjq
t
j + qjp

t
j = 2pjq

t
j + Sj, where Sj := qjp

t
j − pjqt. Note that Sj is real skew-

symmetric. Substituting for Aj into In + (A1 + · · ·+Am) = Jn, and rewriting we obtain:

In + (S1 + · · ·+ Sm) = Jn − 2

m∑
j=1

pjq
t
j

The left hand side is an invertible matrix since S1 + · · · + Sm is real skew-symmetric

(see item (3) in §5). Each of the m + 1 terms on the right hand side has rank 1. Thus

a necessary condition for the ranks of the two sides to be equal is that m + 1 ≥ n, or

m ≥ n− 1 (see item (1) in §5).

2.7. Proof via Witsenhausen’s theorem, 1980s. The following theorem about decom-

positions of a general graph contains the Graham-Pollak theorem as a special case:

Theorem 4. (WITSENHAUSEN, 1980S) The number of complete bipartite graphs in any
decomposition of a graph G is at least the number of positive eigenvalues of the adjacency
matrix of G. (It is also at least the number of negative eigenvalues.)

The eigenvalues of the adjacency matrix of the complete graph Kn are n− 1 and −1, the

latter repeated n− 1 times (see item (4) in §5). Thus the Graham-Pollak theorem follows

as an immediate consequence.

PROOF: (OF THEOREM 4) We introduce two subspaces U and W of Rn:

• U is the span of all eigenspaces of the adjacency matrix A of G corresponding to

positive eigenvalues. The dimension of U equals the number of positive eigen-

values of A, since A being real symmetric is diagonalizable over the reals by the

spectral theorem.

• We define W := {w ∈ Rn | ptjw = 0 ∀ 1 ≤ j ≤ m}. Clearly dimW ≥ n−m.

The key observation of the proof is the following claim: U ∩W = 0. Before we prove the

claim, let us see how the proof is finished once we have it. It follows from the claim that

dimU + dimW ≤ n, which means n−m ≤ dimW ≤ n− dimU , or m ≥ dimU , which gives

us the theorem.
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It only remains to prove the claim that U ∩ W = 0. This in turn follows from the

following two claims:

• utAu > 0 for u ∈ U : Write u = λ1u1 + · · ·+ λsus, where the ui are pairwise orthog-

onal eigenvectors corresponding to positive eigenvalues λi (respectively) for A.

(Such vectors ui exist by the spectral theorem.) We have utAu = λ1u
t
1u1 + · · · +

λsu
t
sus > 0.

• wtAw = 0 for w ∈ W : It is enough to show wtAjw = 0 for w ∈ W and 1 ≤ j ≤ n

(since A = A1 + · · ·+Am). But wtAjw = wt(pjq
t
j + qjp

t
j)w = (ptjw)

tqj + qj(p
t
jw) = 0. 2

3. (BALANCED INCOMPLETE) BLOCK DESIGNS AND FISHER’S INEQUALITY

The theory of block designs was developed by Fisher and Yates in the 1930s motivated by

applications to the design of experiments in agriculture. It has since found other uses,

e.g., in software testing.

3.1. Definition of a BIBD. A balanced incomplete block design, BIBD for short, consists

of the following data:

• A finite set called the vertex set, whose elements are called vertices; the cardinality

of this set is denoted v.

• A collection of subsets of vertices, each subset being called a block; the blocks

all have the same cardinality, denoted k. (Caveat: blocks could be repeated, that

is, the same subset of the vertex set may appear as a block multiple times.) We

assume that k ≥ 2.

• (Axiom of balancedness) For every pair of vertices, the number of blocks contain-

ing both is the same, this being denoted λ. Note that λ ≥ 1 since k ≥ 2.

• (Axiom of incompleteness) v > k, or, in other words, the whole vertex set is not a

block.

To draw attention to the integers v, k, and λ, the above data set is also called a (v, k, λ)-

BIBD.

3.2. Some examples of BIBDs. An easy example of a BIBD is obtained by taking all

subsets of the vertex set of a given cardinality k ≥ 2 to be blocks. The λ in this case is(
v−2
k−2
)
.

3.2.1. The projective planes. Here is a more interesting family of examples, called the

projective planes. Let F be a finite field and T the F-vector space formed by 3-tuples of

elements of F. Take the vertex set V to consist of lines (i.e., 1-dimensional subspaces)

of T . The blocks are parametrized by 2-dimensional subspaces of T . A vertex belongs

to a block if the line it represents belongs to the 2-dimensional subspace the block is

indexed by.
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Denoting by q the number of elements of F, we have in this case:

(2) v =
q3 − 1

q − 1
= q2 + q + 1, k = q + 1, λ = 1.

3.2.2. The Fano plane. Consider the special case of the above construction when F is the

field of 2 elements. Called the FANO PLANE, it is a (7, 3, 1)-BIBD. Each line of T has in this

case a unique non-zero element and so we may identify the vertices with the non-zero

elements of T . A picture of the Fano plane is drawn below. The six straight lines and the

circle represent the blocks.

•

•

•
••

• •(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0, 1, 1)(1, 0, 1)

(1, 1, 0)

The point in
the centre is (1, 1, 1)

FIGURE 3.1. The Fano plane

3.3. The incidence matrix M . It is convenient to associate an incidence matrix M to a

BIBD. The rows of M are indexed by the vertices, the columns by the blocks. Each entry

of M is either 1 or 0 depending upon whether or not the vertex corresponding to the row

of the entry belongs to the block corresponding to column of the entry.

Each column-sum of M is clearly k (by the second item in the definition above of

BIBD). As we will presently show, the row-sums of M are all the same and equal to the

“replication number”.

3.4. The replication number r. Given a vertex x, let rx denote the number of blocks to

which x belongs. Consider the set

Rx := {(y,A) | y vertex, y 6= x; A block; both x, y belong to A}

What is the cardinality of Rx? We can reckon it in two different ways:

• there are v − 1 choices for y and, for each such choice, there are λ choices for A.

• there are rx choices for A and, for each such choice, there are k − 1 choices for y.

Equating the resulting two expressions for the cardinality of Rx, we obtain:

(3) rx(k − 1) = λ(v − 1) or rx =
λ(v − 1)

k − 1

Thus rx is the same for all vertices x. It is denoted r and called the replication number.

Each row-sum of the incidence matrix M clearly equals r.
8



3.5. The number b of blocks. We denote by b the number of blocks in a BIBD. Equating

the sum of the row-sums with the sum of the column-sums of the incidence matrix M ,

we obtain vr = bk. Substituting for r from (3) we get:

(4) b =
λv(v − 1)

k(k − 1)

3.6. Constraints on (v, k, λ). The fact that r and b, given respectively by (3) and (4), are

integers obviously imposes two constraints on the possible values of (v, k, λ) of BIBDs

(see item (2) in §6). Fisher’s inequality, discussed in §3.7 below, imposes yet another

constraint: b ≥ v.
These three constraints are however not sufficient to guarantee that a triplet (v, k, λ)

arises from a BIBD. For instance, (43, 7, 1) satisfies all three—we get r = 7 and b = 43—but

nevertheless it is known that there is no (43, 7, 1)-BIBD (see item (7) in §6).

A characterization of the set of values (v, k, λ) of BIBDs is not yet known. It is a basic

and difficult open problem. We don’t even know whether or not there exists a (22, 8, 4)-

BIBD.

3.7. Fisher’s Inequality. This basic inequality states the following:

(5) In any BIBD, the number b of blocks is at least the number v of vertices: b ≥ v

PROOF: The columns of the incidence matrix M are elements of Rv. There being b of

these, it is enough to show that they span Rv. We write out explicit expressions for each

of the standard basis vectors ej of Rv, 1 ≤ j ≤ v, as linear combinations of the columns

of M .

Since each row-sum of M equals r, addition of all the columns of M equals

(6) r(e1 + . . .+ ev)

Fix j, 1 ≤ j ≤ v. Addition of those columns whose entry in row j is 1 equals (by the axiom

of balancedness):

(7) λ(e1 + · · ·+ ev) + (r − λ)ej

By (3) and the incompleteness axiom (and the fact that λ ≥ 1), we have r = λ(v−1)/(k−1) >
λ, and in particular r − λ 6= 0. We may thus express ej as a linear combination of the

vectors in (6) and (7):

(8) ej =
1

(r − λ)
· ((e1 + · · ·+ ev) + (r − λ)ej)−

1

r(r − λ)
· (r(e1 + · · ·+ ev))

The vectors in (6) and (7) being linear combinations of columns of M , we conclude that

each ej and hence all of Rv is contained in the column space of M . 2

For a recasting of the above proof, see item (6) of §6.
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4. ACTIVITY SET 1

(1) Let M be a matrix of size m× n each entry of which is either 0 or 1. Consider the
rank of M as a matrix over the reals and its rank as a matrix over the field of two
elements. What is the relationship between these two ranks?

(2) Observe that the standard bilinear form on Fn (where F is an arbitrary field)
defined in §1.5 is non-degenerate. Recall that non-degeneracy of a symmetric
bilinear form ( , ) means the following: if (v, w) = 0 for some v ∈ Fn and all w ∈ Fn,
then v = 0.

(3) Let V be a finite dimensional vector space with a symmetric bilinear form ( , ).
For a subspace of W , define W⊥ := {v ∈ V | (v, w) = 0 ∀ w ∈ W}. A subspace W is
called isotropic if W ⊆W⊥.
(a) Observe that dimW⊥ ≥ dimV − dimW and that equality holds if the form is

non-degenerate.
(b) If the form is non-degenerate then any isotropic subspace has dimension at

most dimV/2 (and hence at most bdimV/2c).
(4) Construct on Rn various non-degenerate symmetric bilinear forms ( , )j, one for

each j, 0 ≤ j ≤ bn2 c, such that the maximum dimension of an isotropic subspace
with respect to ( , )j is exactly j.

(5) In a certain town there are n residents. They want to form clubs, subject to the
following rules:
• Each club has an odd number of members.
• The number of members common to any two clubs is odd.
• No two distinct clubs have the same set of members.

What is the maximum number of clubs that they can form? (Hint: The answer is

2b(n−1)/2c.)

(6) Let An be the n×n matrix whose diagonal entries are all 0 and off-diagonal entries
are all 1. In other words, An is the adjacency matrix of the complete graph on n

vertices. Consider An as a matrix over the field of 2 elements. Show that An is
invertible for n even and of rank n − 1 for n odd. In which of these cases is it
diagonalizable?

(7) In a certain town there are n residents. They want to form clubs, subject to the
following rules:
• Each club has an even number of members.
• The number of members common to any two distinct clubs is odd.

Note that it follows from these rules that no two distinct clubs have the same set
of members. What is the maximum number of clubs that can be formed? (Hint:

The answer is n for n odd and n− 1 for n even.)

(8) Let A be a 2n × 2n real matrix. Suppose that all the diagonal entries of A are 0

and that every off-diagonal entry is either 1 or −1. Show that A is invertible.

10



5. ACTIVITY SET 2

The first three items are in the form of assertions. Prove them from first principles.

(1) rank (A1 + · · ·+As) ≤ rankA1+ · · ·+rankAs for matrices A1, . . . , As of a fixed size.

(2) Let A be a n× n real skew-symmetric matrix.

(a) The eigenvalues of A are all purely imaginary.

(b) Two eigenvectors corresponding to distinct eigenvalues of A are orthogonal

(with respect to the standard Hermitian inner product on Cn).
(c) The space of vectors orthogonal to a given eigenvector is invariant under the

action of A.

(d) There is a unitary matrix U such that U∗AU is diagonal with purely imaginary

diagonal entries.

(3) If −1 is not an eigenvalue of an n× n matrix A, then In + A is invertible (where In
stands for the n×n identity matrix). In particular, In+A is invertible if A is a real

skew-symmetric matrix.

(4) Write down the adjacency matrix An of the complete graph Kn on n vertices and

consider it as a matrix over the reals. What are the eigenvalues (with multi-

plicities) of An? What is the minimal polynomial of An? Identify a basis of Rn

consisting of eigenvectors of An. (For a generalization, see (6b) in §6.)

(5) Write down the adjacency matrix of a complete bipartite graph (with p vertices in

one part and q in the other). What is its rank? What are its eigenvalues (with

multiplicities)? What are its characteristic and minimal polynomials? Can you

find a basis for Rp+q consisting of a set of mutually orthogonal eigenvectors for it?

(Compare with the statement of Witsenhausen’s theorem.)
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6. ACTIVITY SET 3

(1) Here is an alternate proof (without using (3)) that the number of blocks b in a

BIBD is given by b = λv(v−1)
k(k−1) . Consider a matrix whose rows are indexed by subsets

of cardinality two of the vertex set and whose columns are indexed by the blocks, with

each entry of the matrix being 1 or 0 depending upon whether the block corresponding

to the column of the entry contains the subset corresponding to the row. The matrix has(
v
2

)
rows with each row-sum being λ. It also has b columns with each column-sum being(

k
2

)
. Equating the sum of the row-sums to the sum of the column-sums leads to the given

expression for b.

(2) Show that BIBDs with the following values of (v, k, λ) do not exist: (8, 3, 1), (19, 4, 1).

(3) Construct explicitly BIBDs with the following values of (v, k, λ): (3, 2, 1), (4, 2, 1).

(4) Show that a (25, 10, 3)-BIBD does not exist.

(5) Equation (2) gives the values of v, k, and λ for a projective plane in terms of the

cardinality q of the finite field. Prove their correctness. Express r and b too in

terms of q.

(6) The proof of Fisher’s inequality in §3.7 may be recast in the following terms.

Notation is as in §3.

(a) MM t = (r − λ)Iv + λJv, where Iv is the identity matrix of size v × v and Jv is

the matrix of size v × v all of whose entries are 1.

(b) (r−λ)Iv+λJv has eigenvalues r−λ with multiplicity v− 1 and r+(v− 1)λ with

multiplicity one. In particular, it is non-singular.

(c) It follows from the two observations above that MM t has rank v, and so b ≥ v.
(7) We state without proof the following result (Bruck-Ryser-Chowla theorem) using

which it can be shown that a (43, 7, 1)-BIBD does not exist. For a (v, k, λ)-BIBD

with v = b to exist, the following conditions are necessary: if v is even, then k−λ is

the square of an integer; if v is odd, then the equation z2 = (k−λ)x2+(−1)(v−1)/2λy2

has a non-trivial solution in the integers. (Hint: Suppose that a (43, 7, 1)-BIBD exists.

Then, by the theorem, there exists a non-trivial solution in the integers to z2+y2 = 6x2. By

canceling common factors, we may assume that there is a solution in which the integers

x, y, z have no common prime factor. Fix such a solution. Then 3|(z2+y2), so 3|z2 and 3|y2,
and so also 3|z and 3|y. Put z = 3z′, y = 3y′. We have 9z′2 + 9y′2 = 6x2, or 3z′2 + 3y′2 = 2x2,

so 3|x. Thus 3 divides each of x, y, z, a contradiction to our choice of x, y, z.)
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