
1. The Lie algebra sl2 and its finite dimensional representations
[s:sl2]

[ss:sl2ksl2c]1.1. sl2(k) and sl2(C). Let k be a commutative ring with identity. The Lie algebra
sl2(k) consists of traceless 2 × 2 matrices with entries in k, the Lie bracket being
defined by [X,Y ] := XY − Y X, where XY and Y X denote the usual matrix
products. The elements

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
generate sl2(k) freely as a k-module. They constitute the standard basis. The Lie
bracket with respect to the standard basis is given by:

(1.1) [H,X] = 2X, [X,Y ] = H, [H,Y ] = −2Y

Thus if 2 is a unit in k then sl2(k) is perfect, i.e., [sl2(k), sl2(k)] = sl2(k). If k is a
field in which 2 6= 0, then sl2(k) is simple, i.e., it has no non-zero proper ideals and
is not abelian.1

In particular sl2(C) is a simple Lie algebra. It is the simplest complex semisimple2

Lie algebra in that it is the unique such algebra of dimension 3 over C, and 3 is the
minimum possible dimension of any such algebra.

[ss:sl2crepshort]
1.2. Finite dimensional representation theory of sl2(C): a short digest.
We now consider finite dimensional representations of sl2(C). Stated below are
some basic facts about these. The proofs follow in the later subsections below.

(a) (“complete reducibility”) every such representation is a direct sum of irre-
ducible sub representations.

(b) the expression as a direct sum of irreducible sub representations is unique:
if V1⊕· · ·⊕Vm and W1⊕· · ·⊕Wn are two such expressions, then m = n and
there is a permutation σ of {1, . . . ,m} such that V1 'Wσ1, . . . , Vm 'Wσm.

(c) (isomorphism classes of finite dimensional) irreducible representations are
“naturally” parametrized by the non-negative integers; the irreducible rep-
resentation Vn corresponding to n has “highest weight” n.

(d) dimVn = n+ 1.

The first statement holds verbatim for any complex semisimple Lie algebra. It is
a fundamental theorem in the representation theory of such algebras and is called
Weyl’s complete reducibility . While uniqueness as in the second statement holds
in a very general context (see, e.g., [?, ]), it is in the present case (not just for
sl2(C) but also for any complex semisimple Lie algebra) a consequence of “linear
independence of irreducible characters”. Analogous to the third statement, there
is, for any complex semisimple Lie algebra, a parametrization by “highest weights”
due to Cartan of the irreducible representations. This goes by the name of Cartan’s
highest weight theory . Further, there are various famous formulae that elucidate
the structure of a given irreducible representation: the fourth statement above,
for example, is a special case of Weyl’s dimension formula which computes the
dimension of the irreducible representation corresponding to a highest weight in
terms of the highest weight.

1One dimensional Lie algebras are not simple although they have no non-zero proper ideals.
2Let g be a finite dimensional Lie algebra over C. The radical of g is the largest ideal in g that

is solvable as a Lie algebra. We call g semisimple if it has trivial radical: the zero lie algebra is

not considered semisimple by convention. Clearly g is semisimple if it is simple.
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[ss:der] 1.3. Derivations constitute a Lie algebra. Let k be a commutative ring with
identity. A k-algebra A is a k-module A together with a bilinear map A⊗ A → A
called “multiplication” (all tensor products are over k). Fix a k-algebra A and let
us write µ(a, b) for the image of a⊗ b under mulitiplication (a, b in A). A k-linear
endomorphism D of A is a k-derivation or just derivation if it satisfies the “Liebniz
rule”: Dµ(a, b) = µ(Da, b) + µ(a,Db).

• Derivations of A form a Lie subalgebra of the Lie algebra EndA of all k-linear
endomorphisms of A.

• If φ is a k-linear endomorphism such that φ(µ(a, b)) = µ(φ(a), b) = µ(a, φ(b)) and
D a derivation, then φD is a derivation.

• Consider the algebra A of polynomials over k in commuting variables u1, u2, . . . .
Given polynomials f1, f2, . . . , the k-endomorphism f1∂/∂u1+f2∂/∂u2+· · · of A is a
derivation. Moreover, every derivation of A is of this form. The “degree derivation”,
for which every homogeneous polynomial is an eigenvector with eigenvalue equal to
its degree, is, for example, given by u1∂/∂u1 + u2∂/∂u2 + · · · .

• The algebra A could in particular taken to be a Lie algebra. The endomorphims
adX : Y 7→ [X,Y ] for X an element of A are then derivations (this is the content
of the Jacobi identity axiom). Such derivations are inner . Derivations that are not
inner are outer . As follows from Cartan’s semisimplicity criterion3, every derivation
of a complex semisimple Lie algebra is inner.

[ss:sl2polyuv]
1.4. Action of sl2 on polynomials in two variables. Let k be a commutative
ring with identity. Let P denote the polynomial ring over k in two commuting
variables u and v. The association

X 7→ u
∂

∂v
, H 7→ u

∂

∂u
− v ∂

∂v
, Y 7→ v

∂

∂v

defines an action of sl2(k) on P by derivations, as can be readily checked. We have

X · umvn = num+1vn−1, H · umvn = (m− n)umvn, Y · umvn = mum−1vn+1

The action preserves degrees, so P splits as a direct sum P0 ⊕ P1 ⊕ P2 ⊕ · · · as an
sl2(k)-module, where Pj is the submodule of homogeneous polynomials of degree j.
The monomials of degree j form a basis for Pj , so Pj is a free k-module of rank j+1.

Let now k be a field. We claim that Pm is irreducible if the characteristic
of k is either 0 or more than m: given 0 6= v in an sl2(k)-submodule of Pm, we
conclude, by repeated application of X that um belongs to the submodule; since
Y jum = m(m−1) · · · (m− j+1)um−jvj , it follows that the submodule is all of Pm.
The condition on the characteristic is necessary for Pm to be irreducible: if m ≥ p
where p denotes the characterisitc of k, then, as is easily seen, um, um−1v, um−2v2,
. . . , um−jvj span a submodule where 0 ≤ j < p is such that m ≡ j mod p.

In particular, when k = C, we have the following:

the representations Pm, as m varies over the non-negative integers,
are irreducible; they are pairwise non-isomorphic, since dimPm =
m+ 1.

Exercise 1.4.1. The action of sl2(k) on P extends also to the Laurent polynomial
ring L := k[u, v, u−1, v−1]. We have L = ⊕m∈ZLm, where Lm is the k-submodule
spanned by homogeneous polynomials of degree m.

3This criterion says: a finite dimensional complex Lie algebra is semisimple if and only if its
Killing form is non-degenerate (and the algebra is not zero).
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Assuming k to be a field of characteristic 0, we have:

• for any m, the following are submodules of Lm: L>m := 〈ujvm−j | j ≥ 0〉
and L<m := 〈um−kvk | k ≥ 0〉. Their intersection is clearly 〈ujvk | j + k =
m, j ≥ 0, k ≥ 0〉.
• For m ≥ −1, the only proper submodules of Lm are L>m, L<m, and their

intersection L<m ∩ L<m; the sum of L>m and L<m is all of Lm.
• For m ≤ −1, the only non-zero submodules of Lm are L>m, L<m, and their

sum L>m ⊕ L<m; the intersection of L>m and L<m is zero.
• For m = −1, L>m ⊕ L<m = Lm.

Determine the submodule structure of Lm when k is a field of positive charac-
teristic p.

[ss:eigenhighest]
1.5. Action on eigenvectors of H; highest weight vectors. Let V be an
sl2(k)-module and v an element of V such that Hv = λv for some λ in k. Such an
element v is called a weight vector , and λ its weight . The eigenspaces for H are
called weight spaces. We have

(1.2) H(Xv) = (λ+ 2)Xv and H(Y v) = (λ− 2)Xv

Indeed, from Eq. (1.1) we get immediately the following commutation relations
(among X, H, Y thought of as operators on V ):

(1.3) (H− (λ+2))mX = X(H−λ)m (H− (λ−2))mY = Y (H−λ)m

From Eq.(1.2), we see the following:

(i) the sum W of eigenspaces of H in V for various eigenvalues is an invariant
subspace.

(ii) Assume that k is an algebraically closed field and that V is finite dimen-
sional. Then W 6= 0 (unless V = 0). In particular, if V is irreducible, then
V = W , so V has a basis consisting of weight vectors.

(iii) Assume that k is a field of characteristic 0 and v is a weight vector of
weight λ. If, for some non-negative integer n, the elements v, Xv, X2v,
. . . , Xnv are all non-zero, then they are linearly independent, for they are
all weight vectors with pairwise distinct weights; in particular, if V is finite
dimensional, then Xnv vanishes for some n.

(iv) Assume that k is an algebraically closed field of characteristic 0 and V 6= 0
is finite dimensional. Then V has a highest weight vector , i.e., a non-zero
weight vector v such that and Xv = 0. Indeed, since k is algebraically
closed, we can find a non-zero weight vector v for some λ in k; by the
previous item, it follows that Xnv = 0 for some n; if n be the least
such, then H(Xn−1v) = (λ+ (n− 1)2)(Xn−1v) by Eq. (1.2) and of course
X(Xn−1v) = Xnv = 0.

Exercise 1.5.1. Let k be a field of characteristic 0 and V a finite dimensional
sl2(k)-module. Show that X and Y act nilpotently on V . Show that neither
hypothesis can be omitted. (Hint: By extending scalars, may assume k is algebraically

closed. Since an operator acts nilpotently on a vector space if it acts so on a subspace and

the quotient thereof, we may assume that V is irreducible.)

Remark 1.5.2. Let g be a complex semisimple Lie algebra. An element S (respectively N)
of g is called semisimple (respectively nilpotent) if adS (respectively adN) is semisimple
(respectively nilpotent). It is a theorem, called “the preservation of Jordan decomposition”,
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that, on any finite dimensional representation of g, semisimple elements act semisimply and
nilpotent elements act nilpotently. It follows from this theorem that, on any finite dimensional
sl2(C)-module, H acts semisimply and X, Y nilpotently. (We do not invoke the “preservation”
theorem here, but instead prove this last conclusion directly. We have already seen in item (ii)
above that H acts semisimply on irreducibles; that it acts semisimply on any V follows from
complete reducibility. That X, Y act nilpotently is the previous exercise.)

[ss:divpower]
1.6. The divided power notation. Let k be a field of characteristic 0. If u is an
element of an associative k-algebra with identity, and n a non-negative integer, we
define the divided power u(n) to be the element un/n!. For commuting elements u
and v, the usual binomial expansion becomes in this notation:

(u+ v)(n) =

n∑
k=0

u(k)v(n−k)

Example 1.6.1. Let P be the polynomial ring over k in two commuting variables
u and v as in §1.4. Fix a non-negative integer d and let Vd,Z denote the Z-span of

{u(m)v(n) |m+ n = d}. Since

X(j)u(m)v(n) =

(
m+ j

m

)
u(m+j)v(n−j) Y (j)u(m)v(n) =

(
n+ j

n

)
u(m−j)v(n+j)

it follows that Vd,Z is stable under the operators X(j) and Y (j). In particular, Vd,Z is
an sl2(Z)-module. Given a commutative ring R with identity, we can, by extension
of scalars, consider Vd,R := Vd ⊗R as an sl2(R)-module.

Letting Pd,Z be the Z-module generated by {umvn |m + n = d}, we similarly
define Pd,R := Pd,Z ⊗R.

Since Pd,k = Pd = Vd,k and both Pd,Z and Vd,Z are stable under sl2(Z), we say
that Pd,Z and Vd,Z are admissible lattices for the sl2(k)-module Pd.

It may happen that Pd,R 6' Vd,R when R is a field of positive characteristic: e.g.,
when d = 2 and the characteristic of R is 2. 2

[ss:cdproof]
1.7. Proofs of items (c) and (d) of §1.2. Let k be a field of characteristic 0.
Let V be a finite dimensional sl2(k)-representation and v be a highest weight vector:
that is,

0 6= v, Hv = λv for some λ in k, and Xv = 0

If k is algebraically closed and 0 6= V , then there are highest weight vectors in V ,
as seen in §1.5, item (iv).

Consider v, Y v, Y (2)v, . . . . As seen in item (iii) of §1.5, these are all weight
vectors with respective weights λ, λ−2, λ−4, . . . . In particular, the non-zero ones
in the list are linearly independent, and there exists n such that Y (n)v = 0.

We have XY v = [X,Y ]v + Y (Xv) = Hv + 0 = λv; an easy calculation using
induction and Eq. (1.2) gives the following:

X · Y (n)v = (λ− n+ 1)Y (n−1)v

We now draw several consequences from the above equation:

(A) Let n be least such that Y (n)v = 0. Then λ = n − 1. In particular, λ is a
non-negative integer, and n = λ+ 1.

(B) The span of v, Y v, Y (2)v, . . . , Y (λ)v is sl2(k)-invariant. In particular, if V
is irreducible, the listed elements form a basis of V .
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(C) Any irreducible representation 0 6= V is determined by the weight λ of any
highest weight vector v in it. Indeed if W is an irreducible that admits a
highest weight vector, say w, of the same weight λ, then the association
Y (n)v ↔ Y (n)w defines evidently an isomorphism between V and W .


