
9. Simple and semisimple rings (Après Bourbaki Algebra Chapter 8 §5)
[s:sssrings]
[ss:ssrings]9.1. Semisimple rings. A ring is semisimple if it is semisimple as a (left) module

over itself, or, equivalently, if every (left) module over it is semisimple. (Every module

is a sum of its cyclic submodules. And every cyclic module is a quotient of AA.)

Some facts about semisimple rings:

• A semisimple ring has finite length: in other words, it is Artinian and
Noetherian. (Any finitely generated semisimple module has finite length.)

• Simple modules of a semisimple ring are precisely its minimal left ideals.
(Simple modules are quotients of the ring, but the ring being semisimple every quotient

is isomorphic to a sub.)

• For any left ideal l of a semisimple ring A, there is an idempotent e such
that l = le = Ae. (Write A = l⊕l′. The projection to l is given by right multiplication

by an element e. We have e2 = 1e2 = 1e = e and l = Ae = le.)

• The isotypic components of a semisimple ring are precisely its minimal two-
sided ideals. Any two sided ideal is a sum of these. (Characteristic left ideals

are precisely two-sided ideals. Thus two-sided ideals are sums of isotypic components.

Conversely, isotypic components being characteristic are two-sided ideals.)

• Any quotient of a semisimple ring is semisimple.
[p:oppssring]

Proposition 9.1. The opposite of a semisimple ring is semisimple.

Proof. The opposite of a semisimple module being semisimple (Theorem ??), we
know that Mopp is semisimple where M denotes a semisimple ring as a left module
over itself. But, as is readily verified, Mopp is just the ring Aopp as a left module
over itself (Aopp denotes the opposite ring of A). �

[p:ssrings2]
Proposition 9.2. A ring is semisimple if and only if it is the ring of endomor-
phisms of a finitely generated semisimple module (over some ring).

Proof. If A is semisimple, then so is Aopp. And the endomorphism ring of Aopp

is A itself. Conversely, suppose M is a semisimple finitely generated module over
a ring A, and let C denote its commutant. From the finite generatedness of M
we conclude that C imbeds in a finite direct sum of copies of Mopp. But Mopp is
semisimple. Therefore so is C. �

[ss:srings]
9.2. Simple rings. A semisimple ring satisfying any of the equivalent conditions
below is called a simple ring . The equivalence of the conditions is easy to see given
the facts listed in the previous section about semisimple rings.

• there is only one class of simple submodules;
• the ring is isotypic as a module over itself;
• the only non-trivial two-sided ideal is the whole ring.

We can talk about the length of a simple ring: it is the multiplicity of the simple
module in the ring (as a left module over itself). This length is finite.

The only commutative simple rings are fields. A division ring is simple. The
structure theorem for simple rings in §9.2 says that they are precisely r× r matrix
rings over division rings. We will show later (in §10) the following:

an Artinian ring whose only non-trivial two-sided ideal is the whole
ring is simple.
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[ss:scompss]
9.3. The simple components of a semisimple ring. Let A be a semisimple
ring.

[t:scompss]
Theorem 9.3. The ring A has only a finite number of minimal two-sided ideals,
say Ai, 1 ≤ i ≤ n. Each Ai possesses an identity and is simple as a ring. And
A '

∏n
i=1 Ai. Conversely, a finite direct product of simple rings Bi is semisimple

with Bi being the minimal two-sided ideals.

Proof. The Ai are the isotypic components, so A = ⊕n
i=1Ai. We have AiAj ⊆

Ai ∩ Aj = 0. The component in Ai of the identity element of A is an identity for
the multiplication on Ai. It is easy to check that A '

∏n
i=1 Ai. �

The Ai as in the theorem are called the simple components of the semisimple ring A.
• Any quotient of A is semisimple and isomorphic to a product of some of

the simple components Ai.
• The number of isomorphism classes of simple A-modules equals the number

of simple components of A. For a simple A-module M , there is a unique
simple component Ai such that AiM 6= 0. Considered as an Ai-module, M
is simple.

[ss:dhi.tex]
9.4. Degrees, heights, and indices.

[p:dhi:1]
Proposition 9.4. Let B be a simple ring of length r and M a B-module.

(1) M is free if and only if `B M is either a finite multiple of r or infinite.
(2) If M is free then `B M = r · |B| (where |B| denotes the cardinality of a

B-basis for M).
(3) If M is a B-B-bimodule, then M is free.

Proof. If `B M is either a finite multiple of r or infinite, then M is isomorphic to
a direct sum of BB (transfinite induction?). Conversely, if M is free then M =
(BB)⊕|B|, and so `B M = r · |B|. This proves (1) and (2). Finally, if M is a
bimodule, then M ' M⊗B B ' M⊗B (S⊕r) ' ⊕r(M⊗B S), where S is the simple
B-module. So `B M is a multiple of r and M is free. �

[sss:degree]
9.4.1. Degree. Now let A be a ring and B a simple subring (containing the identity).
Then A is free as a (left) B-module and the cardinality of any two bases agree, for[Aopp : Bopp]

could be quite
different
from [A : B]; in
fact, one could be
finite and the other
infinite, even when
B is a field.

A is a bimodule. The B-degree of A, denoted [A : B] is defined to be the cardinality
of a B-base for A.

• When B is a divsion ring, [A : B] is just the vector space dimension of A.
• For C a simple subring of B (containing the unit), [A : C] = [A : B][B : C].
• For a B-module M , we have `B(A ⊗B M) = [A : B] `B(M). (Proof:

Let S be the simple B-module and r := `(B). On the one hand, ` (A ⊗B M) =

` (A ⊗B (S⊕ `(M))) = ` (A ⊗B S) `(M). On the other, ` (A ⊗B S)·r = ` (A ⊗B (S⊕r)) =

` (A ⊗B B) = ` (A). And ` (A) = [A : B]r by the proposition.)
[sss:hi]

9.4.2. Height and index. Let now A be a simple ring and B a simple subring (con-
taining the unit). Let S and T denote the respective simple modules. The height ,
denoted h(A,B), is `B(S|B); the index , denoted i(A,B), is `A (A⊗B T ).

We have:
(1) `A(A) = i(A,B) `B(B) (Proof: `A(A) = `A(A ⊗B B) = `A(A ⊗B T⊕ `B(B)) =

`A(A ⊗B T ) `B(B) = i(A, B) `B(B).)
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(2) For any A-module P , we have `B(P ) = `A(P )h(A,B) (for P = S⊕ `A(P )).
(3) If A and B are finite dimensional over an algebraically closed field k, then

i(A,B) = h(A,B) (by Frobenius reciprocity).
(4) Using the proposition above, we get [A : B] = i(A,B)h(A,B) (Proof: We

have [A : B] = [A : B] `B(T ) = `B(A ⊗B T ) = `B(S⊕i(A,B)) = i(A, B)h(A, B).)

(5) If C ⊆ B with C simple and containing the unit element, then i(A,C) =
i(A,B)i(B,C) and h(A,C) = h(A,B)h(B,C).

[p:aba’b’]
Proposition 9.5. Furthermore, let M be a non-zero A-module such that `B(M) is
finite; let A′ and B′ denote respectively the commutants of M as an A-module and
B-module. Then A′ and B′ are simple rings and A′ is a subring of B′ containing
the unit element. We have:

i(B′, A′) = h(A,B) h(B′, A′) = i(A,B) [B′ : A′] = [A : B]

Proof. By item (2) above, `B(M) = `A(M)h(A,B), so both factors on the right
are finite. We have already seen that the commutant of a semisimple isotypic
module of finite length r is simple of length r. So A′ and B′ are simple rings
of lengths `A(M) and `B(M) (Corollary ??). Combining this with item (1) above
gives `B(M) = i(B′, A′) `A(M). Comparing with the equation deduced earlier from
item (2), we conclude that h(A,B) = i(B′, A′).

From Corollary ??, it follows that A′ and B′ are their own bicommutants. We
can therefore switch the roles of A and B with B′ and A′ to conclude that i(A,B) =
h(B′, A′).

Finally, the last equation follows now from item (4) above. �
[ss:xsssrings]

9.5. Exercises.

9.5.1. A. ring is primitive if it has a faithful simple module. It is possible that
primitive rings have non-trivial proper two sided ideals (e.g., the ideal of finite rank
linear transformations in the full ring of linear transformations of an infinite dimen-
sional vector space). Prove, however, that an Artinian primitive ring is simple.


