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Sixth problem sheet

Perverse Sheaves

1. Let Fln denote the complex flag variety G/B in type An−1. In other words, Fln = {V • =
(0 ⊂ V 1 ⊂ . . . ⊂ V n = Cn) | dimV i = i} is the set of flags in a fixed vector space C

n

with basis {ei}1≤i≤n. There is an action of GLn on Fln, and thus an action of the subgroup
Sn ⊂ GLn. The standard flag Vstd is given by V k

std = C · 〈ei〉1≤i≤k; its stabilizer is a Borel
subgroup B. For any w ∈ Sn, the dimension of V k

std ∩ w(Vstd)
l is equal to the size of the

intersection {1, 2, . . . , k} ∩ {w(1), w(2), . . . , w(l)}. For any two flags V • and W •, we say that
they are in relative position w if dim(V k ∩W l) = dim(V k

std ∩ w(Vstd)
l).

a) Show that Fln splits into B orbits based on the relative position of a flag with the
standard flag, and that this agrees with the usual Bruhat decomposition of G/B. Show
that Fln ×Fln splits into G orbits based on the relative position of the two flags. Show
that the orbit closure relation agrees with the Bruhat order, in either setting.

Clearly V • andW • are in relative position si ∈ S ⊂ Sn if and only if V i 6= W i and V k = W k

for all k 6= i. We say that V • and W • are in relative position si if V
k = W k for all k 6= i (with

no condition on V i and W i). Let w = si1si2 . . . sid be a sequence of simple reflections. The
Bott-Samelson resolution BS(w) is the space consisting of sequences of flags, ending in the
standard flag, and successively in relative position determined by w:

{(V •
i )

d

i=0 | V
•
d = V •

std, and the pair (V •
k−1, V

•
k ) is in relative position sik for each 1 ≤ k ≤ d}.

It is equipped with a map µ : BS(w) → Fln, µ((V
•
i
)) = V •

0 .

b) Show that this description of the Bott-Samelson resolution agrees with the one given in
lecture.

Set n = 4, and let s, t, u denote the simple reflections in S4 with su = us. For an arbitrary
flag W • in each orbit, calculate the fiber µ−1(W •) when:

c) w = tt.

d) w = sts.

e) w = tsut.

f) w = sutsu.

Now, for each of the above cases, construct the table for µ∗(C[ℓ(w)]). Use these tables (and
possibly other calculations) to decompose this pushforward into I sheaves.

2. This is a family of possible exercises, imitating a computation from lecture. Consider a
partition λ of n, and let Pλ be the corresponding parabolic subgroup of GLn. We will consider
Pλ acting on all Grassmannians G(k, n) for 0 ≤ k ≤ n.

a) Classify the Pλ orbits on G(k, n), and prove that your classification is correct. Compute
their dimensions.

b) Find a resolution of singularities of each orbit closure. Compute the fibers over each orbit
in this resolution.



c) Construct a table for the pushforward of the IC sheaf (i.e. constant sheaf with shift) on
each resolution of singularities. Use this to compute the IC sheaf of the orbit.

Now consider the partial flag variety F(k, k + 1, n), with its forgetful maps p : F(k, k + 1, n) →
G(k, n) and q : F(k, k+1, n) → G(k+1, n). Let dk be the dimension of G(k, n). Define E to be
the functor q∗p

∗(·)[dk+1 − dk] from perverse sheaves with shifts on G(k, n) to perverse sheaves
with shifts on G(k + 1, n). Let F be the functor p∗q

∗(·)[dk − dk+1] in the other direction.

d) Compute the table of E and F applied to each IC sheaf. Compute the decomposition
into perverse sheaves.

e) Verify that, on the Grothendieck group, [E] and [F ] induce an action of Uv(sl2), giving
the representation Vλ1

⊗ Vλ2
⊗ . . .⊗ Vλk

.

f) Find a subcategory of each category of perverse sheaves, preserved under the functors E
and F , whose Grothendieck group gives the subrepresentation Vλ. Are there subcategories
for other subrepresentations?

More theory of Soergel bimodules and Lefschetz operators

3. Prove that the summand Bx ⊂ BS(x) (for a reduced expression) contains both cbot and
ctop.

4. We continue the notation of Exercise 9 from the Fourth problem sheet. Assume that B is
equipped with a Lefschetz operator L given by left multiplication, so that B has hard Lefschetz.

Let {ei} be a collection of elements of B−k−1 which project to an orthonormal basis of B
−k−1

(with respect to the Lefschetz form). Let {fi} be a collection of elements projecting to an

orthonormal basis of P−k+1 ⊂ B
−k+1

.

a) Find a basis for B
−k+1

. Find a basis for BBs

−k
, using the maps α and β.

Let L continue to denote the same operator of left multiplication, now considered to act on
BBs. Let M denote multiplication by some linear polynomial ρ immediately to the left of Bs

in BBs, and suppose that ∂s(ρ) = 1. For v,w ∈ BBs

−k
, one can pair them by the formula

〈v, Lk−1Mw〉. As discussed in lecture, this pairing is the limit of the Lefschetz pairing induced
by L+ ζM on BBs.

b) Compute the matrix of this pairing in the basis you found above.

c) Deduce that the signature of this pairing on BBs

−k
is equal to the signature of the

Lefschetz form on P−k+1 ⊂ B
−k+1

.

Rouquier complexes

5. Let Fs and F−1
s denote the Rouquier complexes introduced in lectures. Check that FsF

−1
s

∼=
R in Kb(R-Bim) as sketched in lectures.

6. Compute the minimal complex of F⊗m
s for m ≥ 0. Describe its perverse filtration explicitly.

7. Write down the summands appearing in the minimal complex of FsFuFtFsFu.

8. Suppose thatmst = 2. Find explicitly a chain map from FsFt to FtFs and back. Renormalize
your maps such that the composition is the identity chain map.

9. This exercise is very very computational! (Hint: If you’re stuck, look at a paper by Elias-
Krasner.) Suppose that mst = 3. Find the most general chain map (of degree 0) from FsFtFs to
FtFsFt and vice versa (i.e. you should get families of maps given by certain parameters). Com-
pute their composition, an endomorphism of FsFtFs. For certain parameters, find a homotopy
map between this composition and the identity chain map.


