Chennai Lectures January 2014

Sixth problem sheet

Perverse Sheaves

1. Let Fl_n denote the complex flag variety G/B in type A_{n-1} . In other words, $\operatorname{Fl}_n = \{V^{\bullet} = (0 \subset V^1 \subset \ldots \subset V^n = \mathbb{C}_n) \mid \dim V^i = i\}$ is the set of flags in a fixed vector space \mathbb{C}^n with basis $\{e_i\}_{1 \leq i \leq n}$. There is an action of GL_n on Fl_n , and thus an action of the subgroup $S_n \subset GL_n$. The standard flag V_{std} is given by $V_{\text{std}}^k = \mathbb{C} \cdot \langle e_i \rangle_{1 \leq i \leq k}$; its stabilizer is a Borel subgroup B. For any $w \in S_n$, the dimension of $V_{\text{std}}^k \cap w(V_{\text{std}})^l$ is equal to the size of the intersection $\{1, 2, \ldots, k\} \cap \{w(1), w(2), \ldots, w(l)\}$. For any two flags V^{\bullet} and W^{\bullet} , we say that they are in relative position w if $\dim(V^k \cap W^l) = \dim(V_{\text{std}}^k \cap w(V_{\text{std}})^l)$.

a) Show that Fl_n splits into B orbits based on the relative position of a flag with the standard flag, and that this agrees with the usual Bruhat decomposition of G/B. Show that $\operatorname{Fl}_n \times \operatorname{Fl}_n$ splits into G orbits based on the relative position of the two flags. Show that the orbit closure relation agrees with the Bruhat order, in either setting.

Clearly V^{\bullet} and W^{\bullet} are in relative position $s_i \in S \subset S_n$ if and only if $V^i \neq W^i$ and $V^k = W^k$ for all $k \neq i$. We say that V^{\bullet} and W^{\bullet} are in *relative position* $\overline{s_i}$ if $V^k = W^k$ for all $k \neq i$ (with no condition on V^i and W^i). Let $\underline{w} = s_{i_1}s_{i_2}\ldots s_{i_d}$ be a sequence of simple reflections. The *Bott-Samelson resolution* $BS(\underline{w})$ is the space consisting of sequences of flags, ending in the standard flag, and successively in relative position determined by \underline{w} :

 $\{(V_i^{\bullet})_{i=0}^d \mid V_d^{\bullet} = V_{\text{std}}^{\bullet}, \text{ and the pair } (V_{k-1}^{\bullet}, V_k^{\bullet}) \text{ is in relative position } \overline{s_{i_k}} \text{ for each } 1 \leq k \leq d\}.$

It is equipped with a map $\mu \colon BS(\underline{w}) \to \operatorname{Fl}_n, \, \mu((V_i^{\bullet})) = V_0^{\bullet}.$

b) Show that this description of the Bott-Samelson resolution agrees with the one given in lecture.

Set n = 4, and let s, t, u denote the simple reflections in S_4 with su = us. For an arbitrary flag W^{\bullet} in each orbit, calculate the fiber $\mu^{-1}(W^{\bullet})$ when:

- c) $\underline{w} = tt$.
- d) $\underline{w} = sts.$
- e) $\underline{w} = tsut.$
- f) $\underline{w} = sutsu.$

Now, for each of the above cases, construct the table for $\mu_*(\mathbb{C}[\ell(\underline{w})])$. Use these tables (and possibly other calculations) to decompose this pushforward into \mathcal{I} sheaves.

2. This is a family of possible exercises, imitating a computation from lecture. Consider a partition λ of n, and let P_{λ} be the corresponding parabolic subgroup of GL_n . We will consider P_{λ} acting on all Grassmannians $\mathbb{G}(k, n)$ for $0 \leq k \leq n$.

- a) Classify the P_{λ} orbits on $\mathbb{G}(k, n)$, and prove that your classification is correct. Compute their dimensions.
- b) Find a resolution of singularities of each orbit closure. Compute the fibers over each orbit in this resolution.

c) Construct a table for the pushforward of the IC sheaf (i.e. constant sheaf with shift) on each resolution of singularities. Use this to compute the *IC* sheaf of the orbit.

Now consider the partial flag variety $\mathbb{F}(k, k+1, n)$, with its forgetful maps $p: \mathbb{F}(k, k+1, n) \to \mathbb{G}(k, n)$ and $q: \mathbb{F}(k, k+1, n) \to \mathbb{G}(k+1, n)$. Let d_k be the dimension of $\mathbb{G}(k, n)$. Define E to be the functor $q_*p^*(\cdot)[d_{k+1}-d_k]$ from perverse sheaves with shifts on $\mathbb{G}(k, n)$ to perverse sheaves with shifts on $\mathbb{G}(k+1, n)$. Let F be the functor $p_*q^*(\cdot)[d_k-d_{k+1}]$ in the other direction.

- d) Compute the table of E and F applied to each IC sheaf. Compute the decomposition into perverse sheaves.
- e) Verify that, on the Grothendieck group, [E] and [F] induce an action of $U_v(\mathfrak{sl}_2)$, giving the representation $V_{\lambda_1} \otimes V_{\lambda_2} \otimes \ldots \otimes V_{\lambda_k}$.
- f) Find a subcategory of each category of perverse sheaves, preserved under the functors E and F, whose Grothendieck group gives the subrepresentation V_{λ} . Are there subcategories for other subrepresentations?

More theory of Soergel bimodules and Lefschetz operators

3. Prove that the summand $B_x \subset BS(\underline{x})$ (for a reduced expression) contains both c_{bot} and c_{top} .

4. We continue the notation of Exercise 9 from the Fourth problem sheet. Assume that B is equipped with a Lefschetz operator L given by left multiplication, so that \overline{B} has hard Lefschetz. Let $\{e_i\}$ be a collection of elements of B^{-k-1} which project to an orthonormal basis of \overline{B}^{-k-1} (with respect to the Lefschetz form). Let $\{f_i\}$ be a collection of elements projecting to an orthonormal basis of $P^{-k+1} \subset \overline{B}^{-k+1}$.

a) Find a basis for \overline{B}^{-k+1} . Find a basis for $\overline{BB_s}^{-k}$, using the maps α and β .

Let L continue to denote the same operator of left multiplication, now considered to act on BB_s . Let M denote multiplication by some linear polynomial ρ immediately to the left of B_s in BB_s , and suppose that $\partial_s(\rho) = 1$. For $v, w \in \overline{BB_s}^{-k}$, one can pair them by the formula $\langle v, L^{k-1}Mw \rangle$. As discussed in lecture, this pairing is the limit of the Lefschetz pairing induced by $L + \zeta M$ on $\overline{BB_s}$.

- b) Compute the matrix of this pairing in the basis you found above.
- c) Deduce that the signature of this pairing on $\overline{BB_s}^{-k}$ is equal to the signature of the Lefschetz form on $P^{-k+1} \subset \overline{B}^{-k+1}$.

Rouquier complexes

5. Let F_s and F_s^{-1} denote the Rouquier complexes introduced in lectures. Check that $F_s F_s^{-1} \cong R$ in $K^b(R\text{-Bim})$ as sketched in lectures.

- 6. Compute the minimal complex of $F_s^{\otimes m}$ for $m \ge 0$. Describe its perverse filtration explicitly.
- 7. Write down the summands appearing in the minimal complex of $F_s F_u F_t F_s F_u$.

8. Suppose that $m_{st} = 2$. Find explicitly a chain map from F_sF_t to F_tF_s and back. Renormalize your maps such that the composition is the identity chain map.

9. This exercise is very very computational! (Hint: If you're stuck, look at a paper by Elias-Krasner.) Suppose that $m_{st} = 3$. Find the most general chain map (of degree 0) from $F_sF_tF_s$ to $F_tF_sF_t$ and vice versa (i.e. you should get families of maps given by certain parameters). Compute their composition, an endomorphism of $F_sF_tF_s$. For certain parameters, find a homotopy map between this composition and the identity chain map.