NOTES ON BILINEAR FORMS

PARAMESWARAN SANKARAN

These notes are intended as a supplement to the talk given by the author at the IMSc Outreach Programme Enriching Collegiate Education-2015.

Symmetric bilinear product

A symmetric bilinear product on a (finite dimensional) real vector space V is a mapping $\langle.,\rangle:. V \times V \rightarrow \mathbb{R},(u, v) \mapsto\langle u, v\rangle$ which is \mathbb{R}-linear in each variable u, v and is symmetric, that is, $\langle u, v\rangle=\langle v, u\rangle$. We say that $\langle.,$.$\rangle is non-degenerate if \langle u, v\rangle=0$ for all $v \in V$ implies that $u=0$. We say that $\langle.,$.$\rangle is positive definite if \langle u, u\rangle>0$ if $u \neq 0$. A positive definite symmetric bilinear product on V is also known as an inner product. An inner product is evidently non-degenerate.

Fix an ordered basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ of V. Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. Writing any $x \in V$ as $x=\sum_{1 \leq j \leq n} x_{j} v_{j}$, we may identify x with the column vector $\left(x_{1}, \ldots, x_{n}\right)^{t}$. We obtain a symmetric bilinear product on V defined as $\langle x, y\rangle_{A}:=x^{t} A y$. Note that $\left\langle v_{i}, v_{j}\right\rangle_{A}=a_{i j}$ where $A=\left(a_{i j}\right)$.

Conversely if $\langle.,\rangle:. V \times V \rightarrow \mathbb{R}$ is any symmetric bilinear product on V, then $\langle.,\rangle=$. $\langle., .\rangle_{A}$ where $A=\left(\left\langle v_{i}, v_{j}\right\rangle\right)$. The matrix A is called the matrix of $\langle.,$.$\rangle with respect to$ \mathcal{B}.

If A is non-singular, then $\langle., .\rangle_{A}$ is non-degenerate. Indeed for a non-zero element x in V, there exists z in V such that $x^{t} z \neq 0$-in fact, we can choose z to be a standard column vector. Since A is non-singular, there exists y such that $z=A y$. Then $\langle x, y\rangle=$ $x^{t} A y=x^{t} z \neq 0$. Conversely, if $\langle.,$.$\rangle is non-degenerate, then its matrix with respect to$ any basis of V is non-singular.

If $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ is another ordered basis \mathcal{B}^{\prime} for V and if $P=\left(p_{i j}\right)$ is the change of basis matrix from \mathcal{B} to \mathcal{B}^{\prime} so that $v_{j}^{\prime}=\sum p_{i j} v_{i}$, then $\sum x_{i} v_{i}=x=\sum x_{j}^{\prime} v_{j}^{\prime}=\sum x_{j}^{\prime} p_{i j} v_{i}$ and so $\left(x_{i}\right)=P\left(x_{j}^{\prime}\right)$. Let A and A^{\prime} be the matrix of the same symmetric bilinear product $\langle.,$. with respect to \mathcal{B} and \mathcal{B}^{\prime} respectively, so that $x^{t} A y=\langle x, y\rangle=\left(x^{\prime}\right)^{t} A^{\prime} y^{\prime}$. Thus $\left(x^{\prime}\right)^{t} A^{\prime} y^{\prime}=$ $x^{t} A y=\left(x^{\prime}\right)^{t} P^{t} A P y^{\prime}$ for all column vectors $x^{\prime}, y^{\prime} \in \mathbb{R}^{n}$. It follows that $A^{\prime}=P^{t} A P$; equivalently $A=\left(P^{-1}\right)^{t} A^{\prime} P^{-1}$.

Let $\langle.,$.$\rangle be a fixed symmetric bilinear product on V$. For $u, v \in V$ we say that u is perpendicular (or orthogonal) to v (written $u \perp v$) if $\langle u, v\rangle=0$. For W a subset of V
we denote by W^{\perp} the subset $\{v \in V \mid v \perp w \forall w \in W\}$ of V. Evidently W^{\perp} is a vector subspace of V. When W is a subspace, we have $\operatorname{dim} W^{\perp} \geq \operatorname{dim} V-\operatorname{dim} W$. The null space of $\langle.,$.$\rangle is the space V^{\perp}$ of all vectors v that are orthogonal to the whole of V. The bilinear product $\langle.,$.$\rangle defines a non-degenerate symmetric bilinear product on V / N$ where N is the null space of $\langle.,$.$\rangle .$

If $W \subset V$ is a vector subspace then the restriction of $\langle.,$.$\rangle to W \times W$ is a symmetric bilinear product on W. This bilinear product on W is non-singular if and only if $W \cap W^{\perp}=$ 0 . In turn $W \cap W^{\perp}=0$ if and only if $V=W \oplus W^{\perp}$ (internal direct sum).

Let $V=\mathbb{R}^{2}$ (regarded as column vectors) and let $\langle x, y\rangle=x_{1} y_{2}+x_{2} y_{1}$. Then $\left\langle e_{1}, e_{1}\right\rangle=$ $0=\left\langle e_{2}, e_{2}\right\rangle$. Nevertheless, the bilinear product is non-degenerate. Indeed, the matrix of the bilinear product with respect to the basis e_{1}, e_{2} is $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$. Since it is invertible, it follows that $\langle.,$.$\rangle is non-degenerate. Note that \left\langle e_{1}-e_{2}, e_{1}-e_{2}\right\rangle<0$.

A basis $\mathcal{B}=u_{1}, \ldots, u_{n}$ of V is called orthogonal if $u_{i} \perp u_{j}$ for $i \neq j$. Note that the matrix of $\langle.,$.$\rangle with respect to an orthogonal basis is diagonal. There always exists an$ orthogonal basis \mathcal{B} for any symmetric bilinear product. If it is non-degenerate, one may replace each $v \in \mathcal{B}$ by $v / \sqrt{|\langle v, v\rangle|}$ to obtain, possibly after a rearrangement of the basis elements, an ordered basis with respect to which the matrix of the bilinear product has the form $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & -I_{s}\end{array}\right)$, where I_{r} denotes the identity matrix of order r. The number r is an invariant of the bilinear product. It equals the dimension of V if and only if the bilinear product is positive definite.

If $W \subset V$ is a subspace such that the bilinear product is non-degenerate on W (so that $V=W \oplus W^{\perp}$ as observed above), then we have the orthogonal projection $p: V \rightarrow W$ defined by $\left.p\right|_{W^{\perp}}=0,\left.p\right|_{W}=$ identity. If $\left\{w_{1}, \ldots, w_{k}\right\}$ is an orthogonal basis for W, then, for any $v \in V, p(v)=\sum_{1 \leq j \leq k} \frac{\left\langle v, w_{j}\right\rangle}{\left\langle w_{j}, w_{j}\right\rangle} w_{j}$. Indeed $v \mapsto \sum_{1 \leq j \leq k} \frac{\left\langle v, w_{j}\right\rangle}{\left\langle w_{j}, w_{j}\right\rangle} w_{j}$ defines a linear map of V to W that vanishes on W^{\perp} and is identity on W.

Hermitian product

Let V be a (finite dimensional) complex vector space. A Hermitian product 〈.,..〉: $V \times V \rightarrow \mathbb{C}$ is a sesquilinear map - conjugate linear in the first argument and complex linear in the second-such that $\langle u, v\rangle=\overline{\langle v, u\rangle}$. It is called non-degenerate if $\langle u, v\rangle=0$ for all $v \in V$ implies $u=0$. It is called positive definite if $\langle u, u\rangle>0$ for $u \neq 0$ (note that $\langle u, u\rangle$ is real since $\langle u, u\rangle=\overline{\langle u, u\rangle})$. A positive definite Hermitian product is also called an inner product. A Hermitian inner product is evidently non-degenerate.

As in the case of symmetric bilinear product on real vector spaces, one has the notion of the matrix of a Hermitian product (with respect to an ordered \mathbb{C}-basis for V). The matrix A of a Hermitian product is Hermitian, that is, $A^{*}=A$ where $A^{*}:=\bar{A}^{t}$. If A, A^{\prime}
are two matrices of the same Hermitian product with respect to two ordered bases $\mathcal{B}, \mathcal{B}^{\prime}$ and if P is the change of basis matrix from \mathcal{B} to \mathcal{B}^{\prime}, then $A^{\prime}=P^{*} A P$.

Let $\langle.,$.$\rangle be a Hermitian inner product on a (finite dimensional) complex vector space V$. Suppose that $T: V \rightarrow V$ is a \mathbb{C}-linear transformation. We obtain a linear transformation $T^{*}: V \rightarrow V$, where $T^{*} v$ for v in V is defined by $\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle$ for all $v, w \in V$. Note that $(S T)^{*}=T^{*} S^{*}$ for any two linear transformations S, T of V and that $T \mapsto T^{*}$ is an involution, that is, $\left(T^{*}\right)^{*}=T$ for all T.

We say that T is normal if $T T^{*}=T^{*} T$, equivalently $\langle T v, T w\rangle=\left\langle T^{*} v, T^{*} w\right\rangle$ for all $v, w \in V$. We say that T is Hermitian if $T=T^{*}$, equivalently, $\langle T v, w\rangle=\langle v, T w\rangle$. We say that T is unitary if $T T^{*}=T^{*} T=I$, the identity transformation, equivalently $\langle T v, T w\rangle=\langle v, w\rangle$ for all $v, w \in V$.

These notions carry over to elements of $M_{n}(\mathbb{C})$ where A^{*} is defined as \bar{A}^{t}. Thus A is Hermitian if $A^{*}=A$, unitary if $A A^{*}=A^{*} A=I$, and normal if $A A^{*}=A^{*} A$. Note that a real $n \times n$ matrix is Hermitian if and only if it is symmetric and is unitary if and only if it is orthogonal (that is $A A^{t}=A^{t} A=I$).

The two versions - in terms of linear transformation and matrices - are related by considering the matrix of a transformation with respect to an ordered basis \mathcal{B} of V with respect to which the matrix of the Hermitian inner product is the identity.

The following are some basic properties of Hermitian matrices.

- The eigenvalues of a Hermitian (or a real symmetric) transformation are all real.

Proof. Suppose that A is Hermitian and v is an eigenvector corresponding to an eigenvalue λ of A. Then $\bar{\lambda}\langle v, v\rangle=\langle\lambda v, v\rangle=\langle A v, v\rangle=\langle v, A v\rangle=\lambda\langle v, v\rangle$. But $\langle v, v\rangle \neq 0$ since $v \neq 0$, by positive definiteness of $\langle.,$.$\rangle . Hence \bar{\lambda}=\lambda$.

- The eigenvalues of a unitary matrix are of absolute value 1 .

Proof. Let $A v=\lambda v$ with $v \neq 0$ and A being unitary. Then $\langle v, v\rangle=\langle A v, A v\rangle=\langle\lambda v, \lambda v\rangle=$ $\bar{\lambda} \lambda\langle v, v\rangle$. Cancelling $\langle v, v\rangle$ we obtain that $\|\lambda\|^{2}=\bar{\lambda} \lambda=1$.

Theorem (Spectral theorem for normal matrices) Let T be a normal matrix in $M_{n}(\mathbb{C})$. Then there exists a $n \times n$ unitary matrix P such that $P^{*} T P$ is diagonal.

Reference

Chapter 8 of M. Artin, Algebra, 2nd ed., Pearson, New Delhi (2011).

Problems

(1) Find an orthogonal basis of \mathbb{R}^{2} for the symmetric bilinear given by the matrix (a) $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right),(\mathrm{b})\left(\begin{array}{lll}1 & 2 \\ 2 & 2\end{array}\right)$.
(2) Find the orthogonal projection of the vector $(2,3,4)^{t} \in \mathbb{R}^{3}$ onto the $x y$-plane where the symmetric bilinear product is given by the matrix $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right)$.
(3) Prove that the maximum of entries of a positive definite matrix A is attained on the diagonal.
(4) Suppose that A is a complex $n \times n$ matrix such that $x^{*} A x$ is real for all $x \in \mathbb{C}^{n}$. Is A Hermitian?
(5) Let $\langle.,$.$\rangle be a non-zero symmetric bilinear product on a real vector space or a$ Hermitian product on a complex vector space V. Show that there exists a vector v such that $\langle v, v\rangle \neq 0$. Show that $V=U \oplus U^{\perp}$ where U is the vector subspace of V spanned by v.
(6) Let $\langle.,$.$\rangle be a positive definite Hermitian product on a complex vector space V$. Define bilinear maps (.,.), [., .]:V×V $\rightarrow \mathbb{R}$ (where V is regarded as a real vector space) as the real and imaginary parts of $\langle.,$.$\rangle so that \langle u, v\rangle=(u, v)+\sqrt{-1}[u, v]$. Show that (.,.) is a positive definite symmetric bilinear product on V and that [.,] is skew symmetric, i.e., $[u, v]=-[v, u]$.
(7) On the vector space $M_{n}(\mathbb{R})$ define $\langle A, B\rangle$ as $\operatorname{tr}\left(A^{t} . B\right)$. Show that this is a positive definite symmetric bilinear product.
(8) Let $W_{1}, W_{2} \subset V$ and let $\langle.,$.$\rangle be a symmetric bilinear product. Show that (a)$ $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$, (b) $W \subset W^{\perp \perp}$. When does equality hold in (b)?
(9) Suppose that $\langle.,$.$\rangle is non-degenerate symmetric bilinear product on V$. Show that $\operatorname{dim} W \leq(1 / 2) \operatorname{dim} V$ if $W \subset W^{\perp}$.
(10) If A, B are symmetric $n \times n$ real matrices which commute, show that there exists a matrix P such that both $P^{t} A P$ and $P^{t} B P$ are diagonal. Find two 2×2 symmetric matrices A and B such that $A B$ is not symmetric. (Comment: The product of two commuting symmetric matrices is symmetric.)

Hints/Solutions to Problems

(1) (a) Take, for example, $e_{1}=(0,1)^{t}$ to be the first basis vector (this wouldn't have been a good choice if $\left\langle e_{1}, e_{1}\right\rangle$ were 0 but that is not the case). Let the second be $a e_{1}+b e_{2}$. We want $\left\langle a e_{1}+b e_{2}, e_{1}\right\rangle=2 a+b=0$. Thus, we can take the second vector to be $(1,-2)^{t}$. (b) Proceeding as in (a), we get $e_{1}=(0,1)^{t},(-2,1)^{t}$.
(2) We could directly apply the formula in the notes provided we have an orthogonal basis for the $x y$-plane. To find such a basis, we could take $w_{1}=e_{1}=(1,0,0)^{t}$ to be the first basis vector. Let $w_{2}=a e_{1}+b e_{2}$ be the second, where $e_{2}=(0,1,0)^{t}$. We want $\left\langle w_{2}, w_{1}\right\rangle=\left\langle a e_{1}+b e_{2}, w_{1}\right\rangle=0$, so we get $a+b=0$. Thus we can take $w_{2}=e_{1}-e_{2}$. Letting $v=(1,2,3)^{t}$, we have

$$
p(v)=\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}+\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=\frac{3}{1} w_{1}+\frac{-5}{1} w_{2}=3 e_{1}-5\left(e_{1}-e_{2}\right)=(-2,5,0)^{t}
$$

(3) In fact, for a symmetric positive definite real matrix $A=\left(a_{i j}\right)$, the maximum cannot be attained at a non-diagonal element. To see this, just observe that $\left\langle e_{i}-e_{j}, e_{i}-e_{j}\right\rangle=a_{i i}+a_{j j}-2 a_{i j}$, for $i \neq j$. Thus if the maximum were attained at $a_{i j}$, we would get a contradiction: $\left\langle e_{i}-e_{j}, e_{i}-e_{j}\right\rangle \leq 0$.
(4) Put $A=A_{1}+i A_{2}$. The imaginary part of $\left(x_{1}-i x_{2}\right)^{t}\left(A_{1}+i A_{2}\right)\left(x_{1}+i x_{2}\right)$ is

$$
-x_{2}^{t} A_{1} x_{1}+x_{1}^{t} A_{1} x_{2}+x_{1}^{t} A_{2} x_{1}+x_{2}^{t} A_{2} x_{2}
$$

Putting $x_{2}=0$, we get $x_{1}^{t} A_{2} x_{1}=0$ for all x_{1}, which means A_{2} is skew-symmetric. But now we also have $x_{1}^{t} A_{1} x_{2}-x_{2}^{t} A_{1} x_{1}=0$. But $x_{1}^{t} A_{1} x_{2}-x_{2}^{t} A_{1} x_{1}=x_{1}^{t} A_{1} x_{2}-$ $x_{1}^{t} A_{1}^{t} x_{2}=x_{1}^{t}\left(A_{1}-A_{1}^{t}\right) x_{2}$. So $x_{1}^{t}\left(A_{1}-A_{1}^{t}\right) x_{2}=0$ for all x_{1}, x_{2}. So $A_{1}-A_{1}^{t}=0$; in other words, A_{1} is symmetric. Thus A is Hermitian.
(5) Since $\langle.,$.$\rangle is non-zero, there exists u_{1}, u_{2} \in V$ such that $\left\langle u_{1}, u_{2}\right\rangle=: \lambda \neq 0$. In case V is a complex vector space, replacing u_{2} by $\bar{\lambda} u_{2}$ if necessary, we may (and do) assume, $\left\langle u_{1}, u_{2}\right\rangle$ is real. Thus $\left\langle u_{2}, u_{1}\right\rangle=\left\langle u_{1}, u_{2}\right\rangle$. If $\left\langle u_{i}, u_{i}\right\rangle \neq 0$ for some $i \leq 2$, take $v=u_{i}$. If $\left\langle u_{i}, u_{i}\right\rangle=0$ for $i=1,2$, set $v=u_{1}+u_{2}$. Then $\langle v, v\rangle=2\left\langle u_{1}, u_{2}\right\rangle \neq 0$.

Since U is the one-dimensional vector space spanned by v, if $U \cap U^{\perp} \neq 0$, then $v \perp v$ and so $\langle v, v\rangle=0$, contrary to our choice of v. So we must have $U \cap U^{\perp}=0$. This implies that $V=U \oplus U^{\perp}$.
(6) Fix notation as in the solution above of (4).That A_{2} is skew-symmetric and A_{1} is symmetric follows from (4). The real part of $\left(x_{1}-i x_{2}\right)^{t}\left(A_{1}+i A_{2}\right)\left(x_{1}+i x_{2}\right)$ is

$$
x_{1}^{t} A_{1} x_{1}-x_{1}^{t} A_{2} x_{2}+x_{2}^{t} A_{2} x_{1}+x_{2}^{t} A_{1} x_{2}
$$

Putting $x_{2}=0$, we get $x_{1}^{t} A_{2} x_{1} \geq 0$ for all x_{1} with equality only if $x_{1}=0$, which means that A_{1} is positive definite.
(7) Writing $A=\left(a_{1}, \ldots, a_{n}\right)$ where a_{i} is the $i^{\text {th }}$ column of A, we see that $\operatorname{trace}\left(A^{t} A\right)=$ $a_{1}^{t} a_{1}+\cdots+a_{n}^{t} a_{n} \geq 0$ with equality holding only if each $a_{i}=0$ (in other words,
only if $A=0$). This proves that the form $\langle A, B\rangle=\operatorname{trace}\left(B^{t} A\right)$ is positive definite. It is evidently symmetric.
(8) (a) and (b) follow readily from the definitions. To see when equality holds in (b), first observe the following: for any subspace W of V, we have (1) $\operatorname{dim} W^{\perp}=$ $\operatorname{dim} V-\operatorname{dim} W+\operatorname{dim}\left(W \cap V^{\perp}\right)$ and (2) $W^{\perp} \supseteq V^{\perp}$. Now, using these, we get $\operatorname{dim} W^{\perp \perp}=\operatorname{dim} W+\operatorname{dim} V^{\perp}-\operatorname{dim}\left(W \cap V^{\perp}\right)$. Thus for $W^{\perp \perp}$ to equal W, it is necessary and sufficient that $V^{\perp}=W \cap V^{\perp}$, or equivalently $V^{\perp} \subseteq W$. Two cases where this condition holds are: $V^{\perp}=0$ (the form is non-degenerate); $W=V$.
(9) This follows from the equality $\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W$ when the form is nondegenerate (see the solution to the previous item).
(10) In fact, we can find an orthogonal matrix P with the desired property. By using the spectral theorem for real symmetric matrices once, we may assume that A is diagonal. Then B is block diagonal symmetric: the block sizes are the multiplicities of the entries of A. Now we apply the spectral theorem to each block of B. Since each corresponding block of A is a scalar matrix, A will not be disturbed when we diagonalize B.
For the second part: If $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then $A B=$ $\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)$.

