SCHUBERT POLYNOMIALS DAY 4

ATMW SCHUBERT VARIETIES 2017

Problem 1 (braid relation of divided difference operators). Prove that $\partial_{1} \partial 2 \partial_{1}=\partial_{2} \partial 1 \partial_{2}$ holds for an arbitrary monomial. The twisted Leibniz rule $\left(\partial_{i}(P Q)=\left(\partial_{i} P\right) Q+s_{i}(P) \partial_{i}(Q)\right)$ may be helpful.

Problem 2. Suppose w and v are permutations with the same length. Show that $\partial_{v}\left(S_{w}\right)$ is 1 if $w=v$ and 0 otherwise.

Problem 3. Show that the Schubert polynomials are linearly independent. The previous exercise will be useful.

Problem 4. Let $w=$ 2431. Compute S_{w} using divided difference operators.
Problem 5. Compute S_{w} by melting Schubert's sweater:
(a) $w=4132$ (this is easy, if you modify the example done on the board!)
(b) $w=s_{3}=1243$ (beware of non-reduced diagrams!)
(c) 1432 (but only if you are enjoying this!)
(d) 2413 (since Grassmannian permutations are good for health!)

Problem 6. Prove Stanley's formula for S_{w}, which expresses it as the sum of monomials $x_{b_{1}} \ldots x_{b_{l}}$ over all words b compatible with reduced words a for w. In this proof, you can assume that Fomin's technique of melting Schubert's sweater is valid.

Problem 7. Let w be a k-Grassmannian permutation. Find a bijection between SSYT on $\lambda(w)$ in the alphabet $\{1, \ldots, k\}$ on the one hand, and melted sweaters associated to w on the other hand.

