SCHUBERT POLYNOMIALS DAY 2

ATMW SCHUBERT VARIETIES 2017

Problem 1 (Length of a permutation). Pick a permutation $w \in S_4$ of length at least 4.

- (a) Verify that permuting the columns of I(w) by w^{-1} yields D(w).
- (b) Fix a reduced decomposition $w = s_{i_1} \cdots s_{i_l}$. Verify that $I(w) = \{s_{i_l} s_{i_{l-1}} \cdots s_{i_{h+1}} (i_h, i_h + 1), 1 \le h \le l\}$.

Problem 2 (Bruhat Order Practice). Pick permutations v and w in $S_4 \setminus \{e, w_0\}$ such that that l(w) - l(v) = 1, but such that $v \not\leq w$. Show that $v \not\vdash \leq w$ using the subword property, using key tableux, and using the rank functions.

- **Problem 3** (Notable permutations in S_4). (a) Find all Grassmannian permutations in S_4 . Calculate D(w), c(w), and $\lambda(w)$ for each of them. Can you make a conjecture about properties these must satisfy?
- (b) Find all 321-avoiding permutations in S_4 . Draw D(w) for each. Can you notice any pattern?
- (c) Pick any 321-avoiding permutation w. Draw the graph $\mathcal{G}(w)$ of all reduced decompositions for w. Is there anything special about this graph?

Problem 4 (Nonreduced words). Suppose $s_{i_1} \cdots s_{i_m}$ is a nonreduced decomposition of a permutation w.

- (a) Deletion Property: Show that there exist integers p < q such that $w = s_{i_1} \cdots \hat{s_{i_p}} \cdots \hat{s_{i_q}} \cdots \hat{s_{i_q}} \cdots \hat{s_{i_m}}$. Here you may want to use the exchange lemma from lecture.
- (b) Show that $s_{i_1} \cdots s_{i_m}$ is equivalent, via only braid relations and commutation relations, to a word $s_{j_1} \cdots s_{j_m}$, such that $s_{j_k} = s_{j_{k+1}}$ for some k.

Date: October 24, 2017.