SCHUBERT POLYNOMIALS DAY 2

ATMW SCHUBERT VARIETIES 2017

Problem 1 (Length of a permutation). Pick a permutation $w \in S_{4}$ of length at least 4 .
(a) Verify that permuting the columns of $I(w)$ by w^{-1} yields $D(w)$.
(b) Fix a reduced decomposition $w=s_{i_{1}} \cdots s_{i_{l}}$. Verify that $I(w)=\left\{s_{i_{l}} s_{i_{l-1}} \cdots s_{i_{h+1}}\left(i_{h}, i_{h}+1\right), 1 \leq\right.$ $h \leq l\}$.

Problem 2 (Bruhat Order Practice). Pick permutations v and w in $S_{4} \backslash\left\{e, w_{0}\right\}$ such that that $l(w)-l(v)=1$, but such that $v \not \leq w$. Show that $v / \leq w$ using the subword property, using key tableux, and using the rank functions.

Problem 3 (Notable permutations in S_{4}). (a) Find all Grassmannian permutations in S_{4}. Calculate $D(w), c(w)$, and $\lambda(w)$ for each of them. Can you make a conjecture about properties these must satisfy?
(b) Find all 321-avoiding permutations in S_{4}. Draw $D(w)$ for each. Can you notice any pattern?
(c) Pick any 321-avoiding permutation w. Draw the graph $\mathcal{G}(w)$ of all reduced decompositions for w. Is there anything special about this graph?

Problem 4 (Nonreduced words). Suppose $s_{i_{1}} \cdots s_{i_{m}}$ is a nonreduced decomposition of a permutation w.
(a) Deletion Property: Show that there exist integers $p<q$ such that $w=s_{i_{1}} \cdots \hat{i_{p}} \cdots \hat{s_{q}} \cdots s_{i_{m}}$. Here you may want to use the exchange lemma from lecture.
(b) Show that $s_{i_{1}} \cdots s_{i_{m}}$ is equivalent, via only braid relations and commutation relations, to a word $s_{j_{1}} \cdots s_{j_{m}}$, such that $s_{j_{k}}=s_{j_{k+1}}$ for some k.

