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Abstract

In this lecture, we will look at the important properties of the Riemann
integral and also study its drawbacks, thus motivating the need for a more
general notion of the integral. This will lead us to the definition of the
Lebesgue integral and its important results will be surveyed.
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1 Introduction

Form the time of the Greeks, the problem of computing the area enclosed
by a curve has been exercising the minds of scientific thinkers. This crucial
question, at the base of the theory of integral calculus, was treated as early as
the third century B.C. by Archimedes, who calculated the area of a circular
disc, the area of a segment of a parabola and other such figures. He used
the ‘method of exhaustion’. The basic idea was to exhaust the given area by
a sequence of polygonal domains and calculate the area as the limit of the
area of the inscribed polygons. During the seventeenth century, many such
areas were calculated and in each case the problem was solved by an inge-
nious device specially suited for the case in hand. One of the achievements
of calculus was to develop a general and powerful method to replace these
special restricted procedures.

From the time of Archimedes until the time of Gauss, the attitude was
that the area was an intuitively obvious entity which need not be defined,
but which had to be computed. Lebesgue, whose theory of measure and in-
tegration we are trying here to motivate, describes the situation as follows.
Before Cauchy, there was no definition of the integral in the precise sense of
the term. One was often limited to saying which areas one had to add, or
subtract, to get the integral.

Cauchy, with his concern for rigour, which is characteristic of modern
mathematics, defined continuous functions and their integrals in much the
same way as we do now. To arrive at the integral of a continuous function f
defined on an interval [a, b] of the real line, he looked at sums of the form

S =
∑
i

f(ξi)(xi+1 − xi)

where a ≤ x0 < x1 < ... < xi < xi+1 < ... < xN = b is a partition of [a, b]
and ξi ∈ [xi, xi+1]. He then deduced the value of the integral∫ b

a

f(x)dx

by a suitable passage to the limit. For a long time, certain discontinuous
functions were integrated; Cauchy’s definition still applied to these integrals,
but it was natural to investigate, as Riemann did, the exact scope of this
definition.
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2 The Riemann Integral

Let [a, b] ⊂ R be a finite interval and let f : [a, b]→ R be a bounded function.
Let P = {a = x0 < x1 < ... < xN = b} be a partition of the interval. Set

mi = inf
x∈[xi−1,xi]

f(x) and Mi = sup
x∈[xi−1,xi]

f(x).

Then, we define the lower and upper (Darboux) sums associated to the func-
tion f and the partition P by

L(P , f) =
∑N

i=1mi(xi − xi−1)

U(P , f) =
∑N

i=1Mi(xi − xi−1).

Then, we define the lower and upper integrals of f by∫ b
a
f(x)dx = supP L(P , f)

∫ b
a
f(x)dx = infP U(P , f)

where the supremum and infimum are taken over all possible partititions of
[a, b]. The function f is said to be Riemann integrable over [a, b] if its lower
and upper integrals are equal and the common value, called the Riemann
integral of f over [a, b] is denoted by the symbol∫ b

a

f(x)dx.

Remark 2.1 Since f is bounded, we have m ≤ f(x) ≤ M for all x ∈ [a, b]
and it is immediate to see that

m(b− a) ≤ L(P , f) ≤ U(P , f) ≤ M(b− a)

for all partitions P . Thus, the lower and upper integrals of f always exist
but the question of their being equal is a delicate one. �

Given a partition P as above, we set

µ(P) = max
1≤i≤N

(xi − xi−1).
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Let ti ∈ [xi−1, xi] for 1 ≤ i ≤ N . Denote

S(P , f) =
N∑
i=1

f(ti)(xi − xi−1).

Remark 2.2 The above notation is incomplete. The sum S(P , f) depends
not only on the partition P and the function f , but also on the choice of the
points ti. But in order to avoid cumbersome notation, we will leave it as it
is. �

Definition 2.1 We say that

lim
µ(P)→0

S(P , f) = A

if, for every ε > 0, there exists a δ > 0 such that, for all partitions P such
that µ(P) < δ, and for all choices of points ti compatible with the partition,
we have

|S(P , f)− A| < ε.�

Theorem 2.1 The function f is Riemann integrable, if and only if, the limit
defined in the above definition exists and, in this case,∫ b

a

f(x)dx = lim
µ(P)→0

S(P , f).�

Thus, we see that the requirement that a function be Riemann integrable is
a very strong one. We have the following result.

Theorem 2.2 If f is continuous, or if f has at most a countable number of
discontinuities, then f is Riemann integrable. �

Example 2.1 Let us consider the unit interval [0, 1]. Let us choose some
numbering of all the rational numbers in this interval and write them as
r1, r2, .... Define

fn(x) =

{
1, if x = r1, r2, ..., rn
0, otherwise.

The function fn is discontinuous only at the points r1, ..., rn which are finite
in number and so, by the previous theorem, fn is Riemann integrable. In
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fact, it is a simple exercise to check this fact directly using the definition of
Riemann integrability and show that the integral is equal to zero.

Let us now consider the function f(x) = limn→∞ fn(x). It is easy to see
that

f(x) =

{
1 if x is rational
0 if x is irrational.

This function is discontinuous everywhere. Given any partition P , it is easy
to see that mi = 0 and that Mi = 1 for all 1 ≤ i ≤ N . Thus L(P , f) = 0
and U(P , f) = 1. Thus the lower integral is zero while the upper integral is
unity and so f fails to be Riemann integrable. �

This brings us to a major drawback of the Riemann integral. The limit
of a sequence of Riemann integrable functions need not be Riemann inte-
grable. Even if the limit is a Riemann integrable function, the limit of the
integrals need not be the integral of the limit, as the following example shows.

Example 2.2 Let fn(x) = n2x(1 − x2)n for x ∈ [0, 1]. Then fn(x) → 0 as
n→∞ (why?). Now, ∫ 1

0

x(1− x2)ndx =
1

2n+ 2
.

Thus, ∫ 1

0

fn(x)dx =
n2

2n+ 2
→ ∞

while, since f ≡ 0, we have
∫ 1

0
f(x)dx = 0. Similarly, if we define

fn(x) = nx(1− x2)n,

again fn → f ≡ 0 pointwise but
∫ 1

0
fn(x)dx→ 1/2 6= 0.�

So, when do the two limit processes - the pointwise limit of functions and
Riemann integration (which has been defined as a limit of sums as shown in
Theorem 2.1) - commute?

Definition 2.2 We say that fn → f uniformly on [a, b] if, for every ε > 0,
there exists a positive integer N such that, for all x ∈ [a, b] and for all n ≥ N ,
we have

|fn(x)− f(x)| < ε.�
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Theorem 2.3 If fn → f uniformly on [a, b], and if all the fn are Riemann
integrable, then f is Riemann integrable and, further,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.�

In the preceding example, the sequence {fn} failed to converge uniformly.
In fact, the non-commutativity of the operations of taking the pointwise limit
and the Riemann integral is a useful test to prove that a sequence of functions
is not uniformly convergent.

Thus, a sequence of functions which does not converge uniformly may
converge to a function which is not integrable or it can happen that the limit
function is Riemann integrable but the limit of the integrals is not the integral
of the limit function. But uniform convergence is a very strong condition as
well.

We thus feel the need for a theory of integration, wherein a larger class
of functions is integrable and such that the process of taking pointwise limits
of functions commutes with the process of integration under fairly easily
verifiable hypotheses. This is where the alternative approach of Lebesgue
comes in useful.

The way the Riemann integral is defined, a certain amount of continuity
is forced on integrable functions. As we saw in Theorem 2.1, if f is Riemann
integrable, then, for all admissible choices of points ti, the value of S(P , f)
cannot vary too much, since the limit exists as µ(P) → 0. Thus, nearby
points must have nearby values ‘to a large extent’ and this is what Theorem
2.2 is all about. We can excuse a countable number of discontinuities. But
the function which takes the value 1 on the rationals and the value 0 on
irrationals is discontinuous everywhere and it fails to be Riemann integrable.

The idea of Riemann in formulating the definition of the integral is to
consider the function following the abcissa. We take the values of the function
as we proceed along the x-axis. Thus, we are forced to consider and compare
the values of the function at nearby points and hence we are dependent on
some amount of continuity.

The idea of Lebesgue is to work, not from the domain, but from the range
of a function. We take a particular value and consider the set of all points
where this value is assumed when we define the integral. Let us illustrate
this via an example.
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Example 2.3 Let P be a partition of the interval [a, b]. Let

f(x) =
N∑
i=1

αiχEi
(x)

where Ei = [xi−1, xi] and for any subset A of R,

χA(x) =

{
1, if x ∈ A
0, if x 6∈ A.

This function has a finite number of discontinuities and the Riemann integral
is easily seen (Exercise!) to be∫ b

a

f(x)dx =
N∑
i=1

αi(xi − xi−1).

By Lebesgue’s method, we will be looking at sets of the form Eα = {x ∈
[a, b] | f(x) = α} for each α ∈ R and multiply α by the ‘length’ of the set
Eα and ‘add’ all these products. In our example, Eα = ∅ if α 6= αi for any
1 ≤ i ≤ N and Eαi

= Ei. Thus the (Lebesgue) integral is given again by the
same expression as the Riemann integral, in this case. �

Remark 2.3 Imagine a merchant in a shop wanting to add all the money he
has collected from sales during a particular day. He has two methods. First,
he can take the money one at a time from the till and add the amounts as
he takes them out. The other is for him to sort out all the money according
to each denomination, count the number of coins or notes in each denomi-
nation, multiply the number by the value of the denomination and add all
these products. Both procedures will yield the same result, but the latter
is more efficient, especially if it involves large quantities of money (have you
seen how they count the Hundi collections in a large temple, say, Tirumala?).
The approach of Riemann is like the first method where we ‘take a function as
it comes along the x-axis, while the approach of Lebesgue is like the second,
where we sort it out according to the values in the range. Obviously, this
does not say anything about the values of nearby points, and so, hopefully,
will not depend on the continuity of the function.�
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The Riemann integral approximates a function by another of the form

N∑
i=1

f(ti)χEi
(x)

where ti ∈ Ei and P = {Ei | 1 ≤ i ≤ N} is a partition of [a, b] and passes to
the limit in sums of the form S(P , f).

The Lebesgue integral approximates a function by one of the form

N∑
i=1

αiχAi
(x)

where Ai, 1 ≤ i ≤ N are ‘more general’ sets than just intervals. It then
defines the integral of the simpler function by

N∑
i=1

αiµ(Ai)

where µ(A) is the ‘length’ of the set A, and then passes to the limit suitably
to get the integral of f .

Here is the catch. What do we mean by the ‘length’ of a set A which is not
an interval. This brings us to the theory of measures which will generalize
the notion of length (area or volume, in higher dimensions) to a fairly large
class of sets.

3 Measures on Sets

In this section we will introduce the notion of a measure on an arbitrary set
X.

Definition 3.1 A collection M of subsets of a set X is said to be a σ-
algebra on X if the following conditions are satisfied:
(i) X ∈M.
(ii) If A ∈M, the Ac ∈M where Ac = X\A is the complement of A in X.
(iii) If Ai ∈M for i = 1, 2, 3, ..., then ∪∞i=1Ai ∈M.�

The pair (X,M) is then called a measurable space and the elements of
M are called measurable sets.
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Definition 3.2 Let (X,M) be a measurable space and let F : X → R be a
given function. It is said to be a measurable function if, for all α ∈ R,
we have

f−1((α,∞)) = {x ∈ X | f(x) > α} ∈ M.�

Proposition 3.1 The following are equivalent:
(i) f−1((α,∞)) ∈M for all α ∈ R.
(ii) f−1([α,∞)) ∈M for all α ∈ R.
(iii) f−1((−∞, α)) ∈M for all α ∈ R.
(iv) f−1((−∞, α]) ∈M for all α ∈ R.�

Given any collection of subsets of a set X, there is the smallest σ-algebra
contaiuning the collection and it is called the σ-algebra generated by the
collection of subsets. If (X, τ) is a topological space, then the σ- algebra
generated by the open sets is called the Borel σ-algebra and its members
are called Borel sets.

Definition 3.3 Let (X,M) be a measurable space. A measure on X is a
function µ : M → [0,∞] such that if {Ai}∞i=1 are elements of M and are
pairwise disjoint, i.e. Ai ∩ Aj = ∅ if i 6= j, then

µ (∪∞i=1Ai) =
∞∑
i=1

µ(Ai). (3.1)

The triple (X,M, µ) is called a measure space. �

Remark 3.1 A measure is the generalization of the notion of length (or area
or volume). We can define it on the measurable subsets only and not on all
sets. The property embodied in equation (3.1) is called countable addi-
tivity. If we have a disjoint set of intervals, we can say that the ‘length’ of
their union is the sum of the individual lengths. Countable additivity is the
generalization of this property. In earlier attempts to generalize the notion
of length the property (3.1) was restricted to the more obvious case of finite
disjoint unions. This was called finite additivity. However, the discovery that
countable additivity was essential is the key to the success of the theory of
Lebesgue measure and integration. �
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On the real line, we can construct a σ-algebra M which contains all the
Borel sets and also define a measure µ such that, for any interval of the form
I = (a, b) (or, [a, b), (a, b], [a, b]), where −∞ ≤ a < b ≤ +∞, we have

µ(I) = length of I.

It also has the following additional properties:
(i) (Completeness) If E ∈M and µ(E) = 0, then for any F ⊂ E, we have
F ∈M and, a fortiori, µ(F ) = 0.
(ii) (Translation Invariance) If E ∈M and if a ∈ R, then

a+ E = {a+ x | x ∈ E} ∈ M

and, further, µ(a+ E) = µ(E).
(iii) (Regularity) If E ∈ M and if ε > 0, then, there exists an open set
V ⊃ E and a compact set K ⊂ E such that

µ(V \K) < ε.

Further,
µ(E) = inf{µ(V ) | V ⊃ E, V open}

= sup{µ(K) | K ⊂ E, K compact}.
The properties (i) - (iii) above define µ uniquely upto a multiplicative

constant. If we set µ(I) to be the length of an interval I, in particular,
µ([0, 1]) = 1, then the measure is uniquely fixed and is called the Lebesgue
measure on R.

Remark 3.2 In the same way, we can define the Lebesgue measure on RN

with the properties (i) - (iii) above and such that, if E = ΠN
i=1[ai, bi), then

µ(E) = ΠN
i=1(bi − ai).�

4 The Lebesgue Integral

Let (X,M, µ) be a measure space and let Ai ∈ M and let αi ≥ 0, for
1 ≤ i ≤ m. Consider the function

s(x) =
M∑
i=1

αiχAi
(x).
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Such a function is called a simple function. Define the integral of s on X
with respect to the measure µ by∫

X

fdµ =
m∑
i=1

αiµ(Ai).

Proposition 4.1 Let f : X → [0,∞) be a non-negative measurable function.
Then, there exists a sequence of simple functions sn such that, for all n,

0 ≤ sn ≤ sn+1 ≤ f

and
lim
n→∞

sn = f.�

In view of the above proposition, we may define, for any non-negative
measurable function f , its integral over X, with respect to the measure µ,
by ∫

X

fdµ = sup
0≤s≤f

s simple

∫
X

sdµ.

In case of a simple function, it is easy to verify that both the definitions
coincide.

Integration is a linear operation. If f and g are non-negative measurable
functions, and if c ∈ R, c ≥ 0, then∫

X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ and

∫
X

cfdµ = c

∫
X

fdµ.

Now, let f be any measurable function and set

f+ = max{f, 0}, and f− = −min{f, 0}.

These are non-negative measurable functions as well and

f = f+ − f−, |f | = f+ + f−.

Definition 4.1 We say that a measurable function f is integrable (f ∈
L1(µ)) if ∫

X

|f |dµ < +∞.�
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If f is integrable, then∫
X

|f |dµ =

∫
X

f+dµ+

∫
X

f−dµ

is finite and so each integral on the right-hand side is finite. Thus, we can
unambiguously define∫

X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ.

Example 3.1 On the set N of natural numbers, we set M to be the σ-
algebra of all subsets. We define the counting measure on (N,M) as
follows: µ(E) = +∞ if E is an infinite subset and µ(E) equals the number
of elements in E if E is a finite set. Then µ defines a measure. Any function
f : N → R is then measurable and in fact is defined by a sequence {an}
where f(n) = an. It is easy to see that∫

N
fdµ =

∞∑
n=1

an.

Thus, an integrable function gives rise to an absolutely convergent series and
we recover the fact that an absolutely convergent series is convergent. �

The Lebesgue integral on R is integration with respect to the Lebesgue
measure. All Riemann integrable functions are also Lebesgue integrable and
the integrals are the same. However, as we saw, the characteristic function
of the set of rationals is not Riemann integrable. But the rationals form
a countable set, which is measurable and so its characteristic function is a
simple function and hence Lebesgue integrable (and, in fact, the integral is
zero).

The Lebesgue integral behaves very nicely with respect to limit processes.
We conclude by stating two very useful theorems in this regard.

Theorem 4.1 (Monotone Convergence Theorem) Let {fn} be a sequence of
measurable functions such that

0 ≤ f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ ... ≤ +∞

and let fn(x)→ f(x) for all x ∈ X. Then, f is measurable and

lim
n→∞

∫
X

fndµ =

∫
X

fdµ.� (4.1)
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Theorem 4.2 (Dominated Convergence Theorem) Let fn be a sequence of
measurable functions and let fn(x) → f(x) for all x ∈ X. Assume that
|fn| ≤ g for all n, where g is an integrable function. Then f is also integrable
and ∫

X

|fn − f |dµ→ 0

as n→∞. In particular (4.1) holds.�
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