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Abstract

Starting from the triangle inequality, we will discuss a series of shape op-
timization problems using elementary geometry and ultimately derive the
classical isoperimetric inequality in the plane.
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One of the important results we learn in plane geometry at high school is
that in any triangle, the sum of the lengths of any two sides is strictly greater
than the length of the third side.

This has been generalized as the triangle inequality when defining a metric
(which generalizes the notion of distance) in topology and plays a very key
role in the study of metric spaces. A particular case of this is the inequality
bearing the same name when defining a norm on vector spaces.

We will now look at some simple consequences of this result in plane
geometry.

Definition 1 A polygonal path joining two points in the plane is a path
which is made up of line segments. �

For example, Figure 1 shows a polygonal path made up of four line seg-
ments connecting the points A and B.
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In this figure, we see that AB < AC + CB, CB < CD + DB and DB <
DE + EB and combining these, we see that

AB < AC + CD +DE + EB.

We can generalize this, using mathematical induction, to any number of
points and we deduce the following result.

Theorem 1 Of all polygonal paths joining two points in the plane, the straight
line joining the points has the shortest length. �
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A curve in the plane can be considered as a continuous map γ : [0, 1] →
R2. The end points of the curve are γ(0) and γ(1). The curve is said to be a
simple curve if γ is injective on (0, 1) and it is a closed curve if γ(0) = γ(1).

Consider a partition P of the interval [0, 1]:

P : 0 = t0 < t1 < t2 < · · · < tn = 1.

The points {γ(ti)}ni=0 lie on the curve and if we connect pairs of consecutive
points γ(ti) and γ(ti+1), for 0 ≤ i ≤ n−1, by line segments, we get a polygonal
path from γ(0) to γ(1). Let `(P) denote the length of this polygonal path.

Definition 2 The curve γ is said to be rectifiable if

sup
P
`(P) < +∞

where the supremum is taken over all possible partitions of the interval [0, 1].
The finite supremum thus obtained is called the length of the curve. �

A continuous function which generates a rectifiable curve is known in the
literature as a function of bounded variation and the supremum obtained
above is called the total variation of the function.

As a consequence of the above definition and Theorem 1, we deduce the
following result.

Corollary 1 Of all paths connecting two points in the plane, the straight
line joining them has the shortest length. �

The above result is one of the first obtained, using differential equations,
when studying the Calculus of Variations, which deals with optimization
problems in function spaces.

Heron’s Theorem

Consider two points A and B in the plane and a line LL1 lying below
them. Consider all possible polygonal paths from A to B consisting of two
line segments AP and PB, where P lies on the line LL1. What is the shortest
possible such path?
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To find the optimal path we proceed as follows.
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Figure 3
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Let A1 be the reflection of the point A with respect to the line LL1. Since
the triangles ∆AOP and ∆A1OP are congruent, we have AP = A1P . Thus,
the length of the polygonal path APB is the same as that of A1PB. But the
shortest path from A1 to B is the straight line A1B. If it intersects the line
LL1 at Q, then the optimal path that we are looking for is AQB. Let QR
be the perpendicular to the line LL1 at Q. Then, again by the congruence
of the corresponding triangles, we get that ∠AQO = ∠A1QO which in turn
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is equal to the vertically opposite angle ∠BQB1 and hence we see that

∠AQR = ∠BQR.

Thus the optimal point Q is such that the ‘angle of incidence’ is equal to the
‘angle of reflection’. This result is called Heron’s theorem.

This is also the law governing the reflection of light on a plane mirror. It
follows from Fermat’s principle that light always follows the shortest possible
path. This principle can also be used to derive the laws of refraction of light
passing through different media.

Exercise: Given two arbitrary lines LL1 and MM1 in the plane and two
points A and B between them, find the shortest polygonal path APQB where
P lies on LL1 and Q lies on MM1 (see Figure 4). �
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Optimal Triangles

Let a, b ∈ R be fixed positive constants. Amongst all triangles ∆ABC
with base length BC = b and area equal to a, we look for the triangle such
that AB + AC is the least possible.

The solution to this is an easy consequence of Heron’s theorem. Indeed,
fixing the base length and the area implies that the altitude, h, of the triangle
is also fixed. Let us draw a line LL1 parallel to the base BC at a distance
h. Then the vertex A can move only on this line.
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Figure 5
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Our problem is to minimize the length of the polygonal path BAC and
we know from Heron’s theorem that this occurs for the point A0 on LL1

where the rays BA0 and A0C follow the laws of reflection, i.e. if A0D is the
perpendicular to LL1 (and hence to BC as well), then ∠BA0D = ∠CA0D.
It is then obvious that A0B = A0C. Thus we have proved the following
result.

Theorem 2 Of all triangles with fixed base and fixed area, the isosceles tri-
angle minimizes the sum of the lengths of the other two sides. �

When studying constrained optimization problems in multivariate cal-
culus, we come across the notion of duality. For instance, when we try to
maximize f(x, y) such that g(x, y) = constant, we have the dual problem of
minimizing g(x, y) such that f(x, y) = constant. Both these problems, under
suitable conditions, have the same optimal solution (x0, y0). In the same way,
the problem posed above on triangles admits a dual problem: of all triangles
with fixed base length and fixed sum of the lengths of the other two sides, find
the triangle with maximum area. The answer again is that it is the isosceles
traingle. To see this, construct the isosceles triangle with given base BC and
such that the sum of the lengths of the other two (equal) sides is the given
number , say, `.

6



Figure 6
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Draw a line LL1 parallel to BC through A. Any triangle ∆PBC with base
BC and the same area will have its vertex P on the line LL1. But then,
by Theorem 2, we know that PB + PC > AB + AC = ` and so none of
those triangles will qualify as candidates to our optimization problem. Any
triangle with the same base but of greater area will have its vertex lying on
a line MM1 parallel to LL1 (and to BC) at a greater distance. If DA meets
MM1 at Q, then, clearly, QB + QC > AB + AC = `. By Theorem 2, any
triangle with base BC and vertex lying on MM1 will have the sum of its
other two sides greater than QB + QC > ` and so it will not qualify either.
Thus the only other triangles which satisfy our constraint must have area
smaller than that of ∆ABC. So we now have the following result, which we
will use repeatedly in the sequel.

Theorem 3 Of all triangles with fixed base length and such that the sum of
the lengths of the other two sides is a fixed constant, the isosceles triangle
has the maximum area. �

For another proof of this result, see Box 1.
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*****************

Box 1

For those who are familiar with conic sections in coordinate geometry, we
can give another proof of Theorem 3. If B and C are fixed, then the locus of
A which moves such that AB +AC is a constant, `, is an ellipse. Then, the
semi-major axis a is given by 2a = ` and the eccentricity e of the ellipse is
given by BC = 2ae. The semi-minor axis b is then defined by b2 = a2(1−e2).
If the origin O is at the midpoint of BC and if θ is the angle the ray OA
makes with the major axis (which is along BC), then the coordinates of A
are given by (a cos θ, b sin θ). The height of the triangle ∆ABC is therefore
b sin θ and its area is

1

2
.BC.b sin θ

which is maximal when θ = π
2
, i.e. A lies on the minor axis, which implies

that the triangle ∆ABC is isosceles.

*****************

Isoperimetric Problem for Polygons

Let N ≥ 3 be a fixed positive integer. Consider the following problem: of
all N-sided polygons with the same perimeter L, find that which encloses the
maximum area. If N = 3, we are dealing with triangles. If L is the perimeter
of a triangle of sides a, b and c, then L = 2s = a + b + c, where s is the
semi-perimeter. Then by Hero’s formula, we know that the area is given by

A =
√
s(s− a)(s− b)(s− c).

Thus, to maximize the area, we need to maximize the product of three posi-
tive numbers

(s− a)(s− b)(s− c)
whose sum equals 3s−(a+b+c) = s which is a is constant (= L/2). From the
classical AM-GM inequality (which compares the arithmetic and geometric
means of a finite set of positive numbers), we know that this is possible only
when the three numbers are equal. Thus it follows that a = b = c, i.e. the
triangle is equilateral.

Let us now consider the case N = 4, i.e. the case of quadrilaterals.
Given a quadrilateral ABCD as in the Figure 7, by reflecting the point D
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with respect to the line AC, we produce a quadrilateral ABCE which has
the same perimeter but is of larger area. So it is enough to look at convex
quadrilaterals.

Figure 7
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Given a convex quadrilateral ABCD with perimeter L, construct isosceles
triangles ∆PBD and ∆RBD on the diagonal BD such that PB + PD =
AB + AD and RB + RD = CB + CD. Then the perimeter of the new
quadrilateral PBRD continues to be L. However, by Theorem 3, the area
of ∆PBD is greater than that of ∆ABD and the area of ∆RBD is greater
than that of ∆CBD. Thus, the quadrilateral PBRD has greater area than
the quadrilateral ABCD, but is of the same perimeter.
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Figure 8
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Now construct isosceles triangles ∆PQR and ∆PSR on the diagonal PR
of this new quadrilateral such that QP +QR = BP + BR and SP + SR =
DP + DR. The quadrilateral PQRS still has perimeter L and an appeal
to Theorem 3 shows that its area is larger than that of the quadrilateral
PBRD, which we saw exceeds that of the original quadrilateral ABCD. By
construction, it is clear that all the four sides of the quadrilateral PQRS are
equal to each other and so this quadrilateral is indeed a rhombus.

Thus, given any convex quadrilateral, we can construct a rhombus of
equal perimeter but of larger area. If θ ≤ π

2
is an internal angle of the

rhombus (whose side is L/4, where L is the perimeter), its area is(
L

4

)2

sin θ

and this is maximal when θ = π
2
.

Thus, of all quadrilaterals of given perimeter L, the square has the maxi-
mum area.

In general, if N ≥ 3 is a positive integer, we have the following result.

Theorem 4 Of all N-sided (N ≥ 3) polygons of fixed perimeter, the regular
polygon encloses the maximum area. �
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By a regular polygon, we mean one whose sides are all of equal length
and all of whose vertices lie on a circle. In this case, the sides subtend equal
angles at the centre of this circle.

Unlike the cases of triangles and quadrilaterals, the proof in the general
case is more involved. We will present here an ingeneous argument due to
Steiner for polygons with an even number of sides.

Up to now (N = 3, 4), we have actually verified that the regular polygon
indeed maximizes the area. We will now change our mode of proof. We will
first prove that there exists an optimal polygon and based on this assumption
of existence, deduce that it must be the regular polygon.

For the existence of an optimal polygon, we argue as follows. The N
vertices of anN -sided polygon are fixed by 2N coordinates in the plane. Since
the perimeter is fixed, say, L, the diameter of the polygon cannot exceed L.
Hence all such polygons can be considered to lie inside a sufficiently large box.
In other words, these 2N coordinates vary in some fixed bounded interval.
The area and perimeter are continuous functions of the coordinates. Thus
the set of all N -sided polygons with perimeter L is represented by a closed
and bounded set in 2N -dimensional space and such a set is compact. Since
the area is a continuous function it attains its maximum at some point in
the compact set which corresponds to the optimal polygon. This proves the
existence of the optimal polygon.

Henceforth we will assume the existence of an optimal polygon of 2N
sides, N ≥ 2, and deduce its properties. As in the case of quadrilaterals, it
is clear that such a polygon has to be convex. Now consider an arbitrary
pair of adjacent sides of this polygon.Let us name the corresponding vertices
A,B and C. Let us freeze all the vertices except B.
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Figure 9
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We vary the polygon by just moving the vertex B in a manner that BA+BC
is fixed so that the perimeter is not altered. The area of the polygon can be
altered only by altering the area of the triangle ∆BAC. Since AC is also
frozen and since BA + BC is constant, it follows from Theorem 3 that for
the optimal polygon, we must have BA = BC. Thus any pair of adjacent
sides are equal and so the optimal polygon must be equilateral, i.e. all its
sides are equal in length.

Remark: This argument works because we already assumed that the poly-
gon is optimal. Given an arbitrary polygon, we can create another one with
the same perimeter and larger area with any fixed pair of adjacent sides equal.
However, a moment’s reflection will show that we cannot repeatedly iterate
the method to produce an equilateral polygon of equal perimeter and larger
area. �

Now let us draw a diagonal of this polygon with N sides on either side
of it, i.e. it bisects the perimeter. We claim that it simultaneously bisects
the area as well. If not, if one side had larger area than the other, we can
reflect this side with respect to the diagonal to produce a polygon of the same
perimeter but of larger area, contradicting the optimality of the polygon.

From now on, we will work with half the polygon defined by this diagonal
(this is the reason why the argument works only for an even number of sides).
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Figure 10
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Let AB be the diagonal and consider the upper half of the polygon. Let P
be a fixed vertex (other than A and B). We will now vary this figure as
follows.The points A and B will be allowed to slide on the line LM defining
the diagonal. The vertices will move so that the distances PA and PB are
fixed and the areas shaded in the figure (i.e. all parts of the enclosed area,
except the triangle ∆PAB, are fixed. The new polygon got by reflecting this
figure across the line LM will still be an equilateral polygon with the same
perimeter. The change in the area is got by changing the area of the triangle
∆PAB which is given by

1

2
PA.PB. sin θ

where θ is the angle subtended at P by AB, and this area is maximal when
θ is a right angle. Thus, in the optimal polygon, the diagonal bisecting the
perimeter and the area subtends a right angle at all the other vertices. This
shows that the optimal polygon is cyclic with the vertices lying on the circle
with the bisecting diagonal as diameter and hence it is a regular polygon.

Remark: Once again, this proof depends on the fact that we are working
with the optimal polygon. Given an equilateral polygon bisected by a diago-
nal, we can create another polygon of the same perimeter and of larger area,
with the diagonal subtending a rightangle at any specified vertex. But we
cannot iterate the procedure to get right angles at all the vertices. �

This proves Theorem 4 for even sided polygons. Now, let L be the perime-
ter and A the area of a 2N -sided polygon. Consider the corresponding regular
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polygon with the same perimeter. Then each side has length L/2N . The
angle subtended by each side at the centre O of the circumscribing circle is
2π/2N = π/N .

θ π /2Ν=

h

L/2N

θ

Figure 11

O

The height of the triangle with one side as base and the centre of the cir-
cumscribing circle as the vertex is then given by

h =
L

4N

1

tan(π/2N)

and so its area is then seen to be

L2

16N2

1

tan(π/2N)
.

The area of the regular polygon is then 2N times this quantity, since there
are in all 2N identical triangles, which yields

L2

8N

1

tan(π/2N)
.

Since this is the optimal area, we deduce the following result.

Theorem 5 If L is the perimeter and A is the area of any 2N-sided polygon
in the plane, then

L2 ≥ 8NA tan
( π

2N

)
. �
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The Isoperimetric Inequality

Consider a simple closed rectifiable curve of length L enclosing a region
Ω in the plane, whose area is A. Pick 2N points on the curve which will form
a polygon of 2N sides. Let LN be the perimenter of this polygon and let AN
be its area.We can choose these points in such a way that, as N → ∞, we
have LN → L and AN → A. Now, we have seen that

L2
N ≥ 8NAN tan

( π

2N

)
= 4πAN

tan
(
π
2N

)
π
2N

which yields, as N →∞,
L2 ≥ 4πA.

This is called the classical isoperimetric inequality in the plane. It can be
shown that equality occurs if, and only if, the curve is a circle. Indeed, for a
circle of radius r, we have L = 2πr and A = πr2, which shows that L2 = 4πA.
The converse is also true.

Rephrasing this, if L is the perimeter of a simple closed curve, the max-
imum area it can enclose is L2/4π and, if A is the area enclosed by a sim-
ple closed curve, the perimeter should at least be

√
4πA. The circle alone

achieves these optimal values.
In other words, of all simple closed curves with fixed perimeter, the circle

alone encloses the maximal area, and of all simple closed curves enclosing a
fixed area, the circle alone has the least perimeter.

In ancient literature, Virgil’s Aeneid mentions Dido’s problem. Dido was
a queen who founded Carthage (modern Tunisia) and she was told that
she could have as much land as she could enclose with a piece of oxhide.
Interpreting the word ‘enclose’ broadly, she cut the oxhide into very thin
strips which she then knotted together to form a closed rope. Thus she had
a rope of fixed length and she had to place it on the earth so as to enclose
the maximum possible area.

In three dimensions, the isoperimetric inequality reads as follows:

S3 ≥ 36πV 2.

Here S denotes the surface area of a bounded domain in R3 and V is its
volume. Again equality holds only for the ball (S = 4πr2, V = 4

3
πr3). Thus

of all possible closed surfaces of fixed surface area, the sphere alone encloses
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the maximum volume and of all domains of fixed volume, the ball has the
least surface area.

This has a nice application in case of soap bubbles. A soap bubble involves
an interface of a liquid and air. The bubble will be stable only if the potential
energy due to the surface tension is minimal. This quantity is proportional
to the surface area of the liquid-air interface. Thus, when we blow a bubble
enclosing a fixed volume of air, nature adjusts the shape of the bubble so
that the surface area is minimal and this occurs for the spherical shape and
so soap bubbles are round in shape.

In the case of smooth simple closed curves in the plane, a very nice proof
of the isoperimetric inequality can be given using Fourier series [1]. The
isoperimetric inequality can be stated in all space dimensions. For a proof in
case of smooth domains, see [2].

The isoperimetric inequality is the starting point of the subject of shape
optimization problems, where we look for shapes which optimize some func-
tional subject to some geometric constraints. This is a very active area of
research today and lies in the confluence of several areas of mathematics like
geometry, partial differential equations, functional analysis and so on.
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