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Abstract

Two important results in linear algebra are the ‘rank-nullity theorem’ and
the equality of the row and column ranks of a matrix. In this note, we will
give a simple proof of the latter, using the former. As a by-product, we also
prove the Fredhölm alternative, which characterizes the range of the linear
operator associated to a matrix.
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In the euclidean space, Rn, we will denote the usual inner-product by
(·, ·) and the corresponding euclidean norm by | · |. Given an m × n matrix
A, we will denote its transpose by AT . In particular, given a column vector
x ∈ Rn, the symbol xT will denote the corresponding row vector and vice
versa . In general, we will treat vectors in Rn as column vectors. Thus, if
x = (x1, · · · , xn)T and y = (y1, · · · , yn)T are vectors in RN , we have

(x,y) = yTx =
n∑

i=1

xiyi, and |x|2 =
n∑

i=1

|xi|2.

If A is an m × n matrix, then it can be considered as a linear transfor-
mation mapping Rn into Rm, and we will denote it by the symbol A. The
rank-nullity theorem states that

dim(R(A)) + dim(N(A)) = n, (0.1)

where dim denotes the dimension of a vector space, R(A) denotes the range
(i.e. the image) of the operator A (which is a subspace of Rm), and N(A)
denotes the null-space of A, i.e. the subspace of Rn of vectors x such that
Ax = 0.
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In particular, if n = m, then the above result implies that A is injective
if, and only if, it is surjective, in which case it is invertible.

Let W be a subspace of Rn. Given x ∈ Rn, there exists a unique vector,
denoted Px ∈ W such that

(Px,y) = (x,y) for all y ∈ W.

To see this, first notice that, by linearity, it is enough to check the above
relation for just the basis vectors of W . Thus, if {w1, · · · ,wk} is a basis for
W , it is enough to find Px such that

(Px,wi) = (x,wi) for all 1 ≤ i ≤ k.

We write Px =
∑k

j=1 αjwj, so that we get k linear equations in k unknowns,

k∑
j=1

(wj,wi)αj = (x,wi) for all 1 ≤ i ≤ k.

The k×k matrix associated with this system, G = (gij), where gij = (wj,wi),
satisfies, for every z ∈ Rk,

zTGz =
k∑

i,j=1

gijzizj =

∣∣∣∣∣
k∑

i=1

ziwi

∣∣∣∣∣
2

,

which is strictly positive if z 6= 0. In particular, this matrix defines an in-
jective linear transformation and hence, by our earlier observation, it is also
invertible. Thus, the system of equations above has a unique solution, which
establishes the existence of Px.

The mapping x 7→ Px defines a linear transformation of Rn into itself
and, clearly, R(P) = W . Then

N(P) = {z ∈ Rn | (z,y) = 0 for all y ∈ W},

which we denote as W⊥. The subspace W⊥ is called the orthogonal comple-
ment of the subspace W . By the rank-nullity theorem,

dim(W ) + dim(W⊥) = n. (0.2)
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Let A be an m × n matrix with real entries. The row (respectively, col-
umn) rank of the matrix A is the maximum number of linearly independent
rows (respectively, columns) in A. It is then clear that the column rank is
just the dimension of the range of the transformation A and the row rank is
the dimension of the range of the transformation AT . As mentioned earlier,
an important theorem in linear algebra is that the row and column ranks of
a matrix are, in fact, equal, and the common value is called the rank of the
matrix. We will now prove this fact.

Let b ∈ R(A). Then, there exists x ∈ Rn such that Ax = b. Let
y ∈ N(AT ), i.e. ATy = 0. Then

(y,b) = yTAx = xTATy = 0.

It follows from this that R(A) ⊂ N(AT )⊥. Consequently, (using (0.2) and
(0.1), we get

dim(R(A)) ≤ dim(N(AT )⊥) = m−dim(N(AT )) = dim(R(AT )). (0.3)

Applying this to AT , we get that

dim(R(AT )) ≤ dim(R(A)),

from which we deduce that

dim(R(A)) = dim(R(AT )),

which, by our earlier observation, is just the fact that the column rank of A
is equal to its row rank.

Since we now have equality throughout in (0.3), it follows that

R(A) = N(AT )⊥,

which charcterises the range of the transformation A. This result is often
referred to in the literature as the Fredhölm alernative.

The case of complex matrices follows the same argument mutatis mutan-
dis. In this case, the above proof shows that the column rank of A is the
column rank of its conjugate transpose A∗. But then it is immediate to see
that the transpose AT and the conjugate transpose A∗ have the same column
ranks and this completes the proof in the complex case.
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