On the rank of a matrix

S.Kesavan

Adjunct Faculty, Department of Mathematics, Indian Institute of Technology, Madras.
email:kesh@imsc.res.in

Abstract

Two important results in linear algebra are the 'rank-nullity theorem' and the equality of the row and column ranks of a matrix. In this note, we will give a simple proof of the latter, using the former. As a by-product, we also prove the Fredhölm alternative, which characterizes the range of the linear operator associated to a matrix.

Key words: Rank of a matrix, range of a linear operator, Fredhölm alternative, rank-nullity theorem.

In the euclidean space, \mathbb{R}^{n}, we will denote the usual inner-product by (\cdot, \cdot) and the corresponding euclidean norm by $|\cdot|$. Given an $m \times n$ matrix A, we will denote its transpose by A^{T}. In particular, given a column vector $\mathbf{x} \in \mathbb{R}^{n}$, the symbol \mathbf{x}^{T} will denote the corresponding row vector and vice versa. In general, we will treat vectors in \mathbb{R}^{n} as column vectors. Thus, if $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$ and $\mathbf{y}=\left(y_{1}, \cdots, y_{n}\right)^{T}$ are vectors in \mathbb{R}^{N}, we have

$$
(\mathbf{x}, \mathbf{y})=\mathbf{y}^{T} \mathbf{x}=\sum_{i=1}^{n} x_{i} y_{i}, \text { and }|\mathbf{x}|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}
$$

If A is an $m \times n$ matrix, then it can be considered as a linear transformation mapping \mathbb{R}^{n} into \mathbb{R}^{m}, and we will denote it by the symbol \mathbf{A}. The rank-nullity theorem states that

$$
\begin{equation*}
\operatorname{dim}(R(\mathbf{A}))+\operatorname{dim}(N(\mathbf{A}))=n \tag{0.1}
\end{equation*}
$$

where dim denotes the dimension of a vector space, $R(\mathbf{A})$ denotes the range (i.e. the image) of the operator \mathbf{A} (which is a subspace of \mathbb{R}^{m}), and $N(\mathbf{A})$ denotes the null-space of \mathbf{A}, i.e. the subspace of \mathbb{R}^{n} of vectors \mathbf{x} such that Ax $=0$.

In particular, if $n=m$, then the above result implies that \mathbf{A} is injective if, and only if, it is surjective, in which case it is invertible.

Let W be a subspace of \mathbb{R}^{n}. Given $\mathbf{x} \in \mathbb{R}^{n}$, there exists a unique vector, denoted $\mathbf{P x} \in W$ such that

$$
(\mathbf{P} \mathbf{x}, \mathbf{y})=(\mathbf{x}, \mathbf{y}) \text { for all } \mathbf{y} \in W
$$

To see this, first notice that, by linearity, it is enough to check the above relation for just the basis vectors of W. Thus, if $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{k}\right\}$ is a basis for W, it is enough to find $\mathbf{P x}$ such that

$$
\left(\mathbf{P} \mathbf{x}, \mathbf{w}_{i}\right)=\left(\mathbf{x}, \mathbf{w}_{i}\right) \text { for all } 1 \leq i \leq k .
$$

We write $\mathbf{P} \mathbf{x}=\sum_{j=1}^{k} \alpha_{j} \mathbf{w}_{j}$, so that we get k linear equations in k unknowns,

$$
\sum_{j=1}^{k}\left(\mathbf{w}_{j}, \mathbf{w}_{i}\right) \alpha_{j}=\left(\mathbf{x}, \mathbf{w}_{i}\right) \text { for all } 1 \leq i \leq k
$$

The $k \times k$ matrix associated with this system, $G=\left(g_{i j}\right)$, where $g_{i j}=\left(\mathbf{w}_{j}, \mathbf{w}_{i}\right)$, satisfies, for every $\mathbf{z} \in \mathbb{R}^{k}$,

$$
\mathbf{z}^{T} G \mathbf{z}=\sum_{i, j=1}^{k} g_{i j} z_{i} z_{j}=\left|\sum_{i=1}^{k} z_{i} \mathbf{w}_{i}\right|^{2},
$$

which is strictly positive if $\mathbf{z} \neq \mathbf{0}$. In particular, this matrix defines an injective linear transformation and hence, by our earlier observation, it is also invertible. Thus, the system of equations above has a unique solution, which establishes the existence of $\mathbf{P x}$.

The mapping $\mathbf{x} \mapsto \mathbf{P x}$ defines a linear transformation of \mathbb{R}^{n} into itself and, clearly, $R(\mathbf{P})=W$. Then

$$
N(\mathbf{P})=\left\{\mathbf{z} \in \mathbb{R}^{n} \mid(\mathbf{z}, \mathbf{y})=0 \text { for all } \mathbf{y} \in W\right\}
$$

which we denote as W^{\perp}. The subspace W^{\perp} is called the orthogonal complement of the subspace W. By the rank-nullity theorem,

$$
\begin{equation*}
\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n \tag{0.2}
\end{equation*}
$$

Let A be an $m \times n$ matrix with real entries. The row (respectively, column) rank of the matrix A is the maximum number of linearly independent rows (respectively, columns) in A. It is then clear that the column rank is just the dimension of the range of the transformation \mathbf{A} and the row rank is the dimension of the range of the transformation \mathbf{A}^{T}. As mentioned earlier, an important theorem in linear algebra is that the row and column ranks of a matrix are, in fact, equal, and the common value is called the rank of the matrix. We will now prove this fact.

Let $\mathbf{b} \in R(\mathbf{A})$. Then, there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{b}$. Let $\mathbf{y} \in N\left(\mathbf{A}^{T}\right)$, i.e. $A^{T} \mathbf{y}=\mathbf{0}$. Then

$$
(\mathbf{y}, \mathbf{b})=\mathbf{y}^{T} A \mathbf{x}=\mathbf{x}^{T} A^{T} \mathbf{y}=0
$$

It follows from this that $R(\mathbf{A}) \subset N\left(\mathbf{A}^{T}\right)^{\perp}$. Consequently, (using (0.2) and (0.1), we get

$$
\begin{equation*}
\operatorname{dim}(R(\mathbf{A})) \leq \operatorname{dim}\left(N\left(\mathbf{A}^{T}\right)^{\perp}\right)=m-\operatorname{dim}\left(N\left(\mathbf{A}^{T}\right)\right)=\operatorname{dim}\left(R\left(\mathbf{A}^{T}\right)\right) \tag{0.3}
\end{equation*}
$$

Applying this to A^{T}, we get that

$$
\operatorname{dim}\left(R\left(\mathbf{A}^{T}\right)\right) \leq \operatorname{dim}(R(\mathbf{A}))
$$

from which we deduce that

$$
\operatorname{dim}(R(\mathbf{A}))=\operatorname{dim}\left(R\left(\mathbf{A}^{T}\right)\right)
$$

which, by our earlier observation, is just the fact that the column rank of A is equal to its row rank.

Since we now have equality throughout in (0.3), it follows that

$$
R(\mathbf{A})=N\left(\mathbf{A}^{T}\right)^{\perp}
$$

which charcterises the range of the transformation \mathbf{A}. This result is often referred to in the literature as the Fredhölm alernative.

The case of complex matrices follows the same argument mutatis mutandis. In this case, the above proof shows that the column rank of A is the column rank of its conjugate transpose A^{*}. But then it is immediate to see that the transpose A^{T} and the conjugate transpose A^{*} have the same column ranks and this completes the proof in the complex case.

