Integration and Polar Coordinates

S. Kesavan
The Institute of Mathematical Sciences,
CIT Campus, Taramani,
Chennai - 600113.
email: kesh@imsc.res.in

Abstract

A simple proof of the formula for the integration of radial functions on $\mathbb{R}^{N}, N \geq 2$, is given. As an application, the volume of the N dimensional unit ball is computed.

1 Introduction

The method of substitution, also known as change of variables, is a useful tool in integration. One of the high points in a course on multivariate calculus is the change of variable formula which states that if $f=\left(f_{1}, f_{2}, \cdots, f_{N}\right): E \subset$ $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a bijection which is smooth both ways, and if g is an integrable function on $f(E)$, then

$$
\int_{f(E)} g(x) d x=\int_{E} g(f(x))\left|\operatorname{det}\left(f^{\prime}(x)\right)\right| d x
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{N}\right), f^{\prime}(x)$ is the Jacobian matrix at x whose $i j$-th entry is given by

$$
\frac{\partial f_{i}}{\partial x_{j}}(x)
$$

and $d x$ indicates that we are performing an N-dimensional volume integration, i.e., we have an N-fold integral with respect to $d x_{1} d x_{2} \cdots d x_{N}$.

The most familiar application of this is the case of polar coordinates in the plane given by $x=r \cos \theta$ and $y=r \sin \theta$ and the integral

$$
\iint g(x, y) d x d y
$$

transforms as

$$
\iint \widetilde{g}(r, \theta) r d r d \theta
$$

with appropriate limits of integration (here $g(x, y)=\widetilde{g}(r, \theta)$). Similarly, in \mathbb{R}^{3}, we have the spherical polar coordinates $x=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi, z=$ $r \cos \theta$ and the integral

$$
\iiint g(x, y, z) d x d y d z
$$

transforms as

$$
\iiint \widetilde{g}(r, \theta, \varphi) r^{2} \sin \theta d r d \theta d \varphi
$$

again, with appropriate limits of integration, where $g(x, y, z)=\widetilde{g}(r, \theta, \varphi)$.
Polar coordinates are particularly useful when the function to be integrated is a radial function, i.e. it depends only on

$$
r=|x|=\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{\frac{1}{2}}
$$

In such a case, the integral reduces to one involving just a single variable. For instance, if we are integrating over the entire space, the integral reduces to

$$
2 \pi \int_{0}^{\infty} \widetilde{g}(r) r d r
$$

when $N=2$ and to

$$
4 \pi \int_{0}^{\infty} \widetilde{g}(r) r^{2} d r
$$

when $N=3$. The most familiar example of this is the evaluation of the Gaussian integral, ubiquitous in probability theory,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

If we set this as I, then,

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r
$$

which yields $I=\sqrt{\pi}$.
When the dimension exceeds three, it is difficult to explicitly write down the spherical coordinates and even if we succeed, the ensuing calculations involving the N-dimensional Jacobian will certainly be horrendous. We would like to have a simple formula, at least for the integration of radial functions, and this is what we will set out to establish in this article.

Looking at the cases $N=2$ and $N=3$, we observe that $2 \pi r$ is the perimeter of the circle of radius r and $4 \pi r^{2}$ is the surface area of the sphere of radius r in these respective dimensions and so we are tempted to conjecture that the integral of a radial function would transform as the integral with respect to r after multiplication by the $(N-1)$-dimensional surface measure of the sphere of radius r in \mathbb{R}^{N}. Is this correct, and, if so, what is the surface measure of the sphere in \mathbb{R}^{N} ?

Let us denote by ω_{N} the volume of the unit ball in \mathbb{R}^{N} and by α_{N}, the $(N-1)$-dimensional surface measure of the unit sphere. The change of variables $x \mapsto x / R$ maps the ball of radius R onto the unit ball and the Jacobian turns out to be a scalar matrix and so we easily conclude that the volume of the ball of radius R is $\omega_{N} R^{N}$ from the change of variable formula mentioned at the beginning. What about the surface measure of the sphere of radius R ? For this we have a very nice application of Gauss' divergence
theorem: if $\Omega \subset \mathbb{R}^{N}$ is a domain, $\partial \Omega$ its boundary on which we have a welldefined outward unit normal ν, then for a smooth vector valued function $v: \Omega \rightarrow \mathbb{R}^{N}$, we have

$$
\int_{\Omega} \operatorname{div}(v(x)) d x=\int_{\partial \Omega} v(x) \cdot \nu(x) d S(x)
$$

where the 'dot' denotes the usual scalar product in \mathbb{R}^{N} and $d S(x)$ indicates that we are performing a surface integral with respect to the appropriate induced surface measure.

Setting $v(x)=x$, we get $\operatorname{div}(v(x))=N$ and so the left-hand side just gives N times the volume of the domain. If Ω is the ball of radius R, then it is $N \omega_{N} R^{N}$. The unit outer normal at a point x on the boundary $\partial \Omega$ of the ball Ω of radius R and centre at the origin is just x / R and so $v(x) . \nu(x)$ reduces to R and so the right-hand side is just R times the surface measure of $\partial \Omega$. Hence we conclude that the surface measure of the sphere of radius R is $N \omega_{N} R^{N-1}$, which when $R=1$ yields

$$
\alpha_{N}=N \omega_{N}
$$

In the sequel, we will prove that the integral of a radial function $f(x)=$ $\tilde{f}(r)$ over a region which is spherically symmetric about the origin is indeed given by

$$
N \omega_{N} \int \tilde{f}(r) r^{N-1} d r=\alpha_{N} \int \tilde{f}(r) r^{N-1} d r
$$

with appropriate limits of integration. We will also determine ω_{N}.

2 Integration of radial functions

Let Ω be the ball of radius $R>0$ with centre at the origin. Consider a continuous real valued function, f, on the closed ball which is radial, i.e. $f(x)=\widetilde{f}(|x|)$ where $\widetilde{f}:[0, R] \rightarrow \mathbb{R}$ is a continuous function. Consider a partition

$$
\mathcal{P}: 0=r_{0}<r_{1}<r_{2}<\cdots<r_{n}=R
$$

of the interval $[0, R]$. Let $\Omega_{i}, 1 \leq i \leq n$, denote the annular region

$$
\left\{x \in \mathbb{R}^{N}\left|r_{i-1} \leq|x|<r_{i}\right\}\right.
$$

so that $\Omega=\cup_{i=1}^{n} \Omega_{i}$. By the mean value theorem, there exists $\xi_{i} \in\left(r_{i-1}, r_{i}\right)$ such that

$$
r_{i}^{N}-r_{i-1}^{N}=N \xi_{i}^{N-1}\left(r_{i}-r_{i-1}\right) .
$$

Choose $y_{i} \in \Omega_{i}$ such that $\left|y_{i}\right|=\xi_{i}$. Define

$$
f_{\mathcal{P}}(x)=f\left(y_{i}\right), x \in \Omega_{i}, 1 \leq i \leq n .
$$

Let

$$
\mu(\mathcal{P})=\max _{1 \leq i \leq n}\left(r_{i}-r_{i-1}\right) .
$$

If $x \in \Omega_{i}$, then

$$
\left|f(x)-f_{\mathcal{P}}(x)\right|=\left|\widetilde{f}(|x|)-\widetilde{f}\left(\left|y_{i}\right|\right)\right|=\left|\widetilde{f}(|x|)-\widetilde{f}\left(\xi_{i}\right)\right| .
$$

Since \tilde{f} is uniformly continious, given $\varepsilon>0$, there exists $\delta>0$ such that, for all $x \in \Omega$, we have

$$
\left|f(x)-f_{\mathcal{P}}(x)\right|<\varepsilon
$$

for all partitions \mathcal{P} such that $\mu(\mathcal{P})<\delta$. Thus, $f_{\mathcal{P}}$ converges uniformly to f as $\mu(\mathcal{P}) \rightarrow 0$. Consequently,

$$
\int_{\Omega} f_{\mathcal{P}}(x) d x \rightarrow \int_{\Omega} f(x) d x
$$

as $\mu(\mathcal{P}) \rightarrow 0$. But since $f_{\mathcal{P}}$ is constant in each subdomain Ω_{i} and since the volume of Ω_{i} is given by $\omega_{N}\left(r_{i}^{N}-r_{i-1}^{N}\right)$, we get

$$
\int_{\Omega} f_{\mathcal{P}}(x) d x=\sum_{i=1}^{n} \widetilde{f}\left(\xi_{i}\right) \omega_{N}\left(r_{i}^{N}-r_{i-1}^{N}\right)=\sum_{i=1}^{n} \widetilde{f}\left(\xi_{i}\right) \omega_{N} N \xi_{i}^{N-1}\left(r_{i}-r_{i-1}\right)
$$

and the last term converges, as $\mu(\mathcal{P}) \rightarrow 0$, to

$$
\int_{0}^{R} N \omega_{N} \widetilde{f}(r) r^{N-1} d r .
$$

Thus, we have shown that if f is a continuous and radial function (i.e. $f(x)=\widetilde{f}(|x|))$ on the closed ball of radius R, centered at the origin, then

$$
\int_{\Omega} f(x) d x=N \omega_{N} \int_{0}^{R} \widetilde{f}(r) r^{N-1} d r .
$$

By passing to the limit as $R \rightarrow \infty$, it is now a simple exercise to see that if f is a continuous and improperly Riemann integrable function on \mathbb{R}^{N} which is radial, then

$$
\int_{\mathbb{R}^{N}} f(x) d x=N \omega_{N} \int_{0}^{\infty} \widetilde{f}(r) r^{N-1} d r
$$

3 Volume of the unit ball

Let us now apply the preceding result to the function

$$
f(x)=e^{-\sum_{i=1}^{N} x_{i}^{2}}=e^{-r^{2}}
$$

On one hand (see Section 1),

$$
\int_{\mathbb{R}^{N}} f(x) d x=\Pi_{i=1}^{N} \int_{-\infty}^{\infty} e^{-x_{i}^{2}} d x_{i}=\pi^{\frac{N}{2}}
$$

On the other hand, using polar coordinates,

$$
\int_{\mathbb{R}^{N}} f(x) d x=N \omega_{N} \int_{0}^{\infty} e^{-r^{2}} r^{N-1} d r
$$

Setting $r^{2}=s$, we get

$$
\int_{0}^{\infty} e^{-r^{2}} r^{N-1} d r=\frac{1}{2} \int_{0}^{\infty} e^{-s} s^{\frac{N}{2}-1} d s=\frac{1}{2} \Gamma\left(\frac{N}{2}\right)
$$

where Γ denotes the usual Gamma function defined by

$$
\Gamma(t)=\int_{0}^{\infty} e^{-s} s^{t-1} d s, t>0
$$

By a simple integration by parts, we see that

$$
\begin{equation*}
\Gamma(t+1)=t \Gamma(t), t>0 \tag{1}
\end{equation*}
$$

and so we deduce from the above computations that

$$
\omega_{N}=\frac{\pi^{\frac{N}{2}}}{\frac{N}{2} \Gamma\left(\frac{N}{2}\right)}=\frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}+1\right)}
$$

When $t=1 / 2$, the integral defining the Gamma function reduces to the Gaussian integral mentioned at the beginning of this article and we have

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

By repeated use of (1) we see that for any positive integer $n, \Gamma(n+1)=n!$. Thus we can compute $\Gamma\left(\frac{N}{2}+1\right)$ by appealing to these facts and repeatedly using (1).

Examples

$$
\begin{aligned}
\omega_{2} & =\frac{\pi}{\Gamma(2)}=\pi . \\
\omega_{3} & =\frac{\pi^{\frac{3}{2}}}{\Gamma\left(\frac{3}{2}+1\right)} .
\end{aligned}
$$

Now,

$$
\Gamma\left(\frac{3}{2}+1\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{2} \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{3}{4} \sqrt{\pi} .
$$

Thus,

$$
\omega_{3}=\frac{4}{3} \pi .
$$

In the same way we can show that

$$
\omega_{4}=\frac{\pi^{2}}{2}, \omega_{5}=\frac{8 \pi^{2}}{15}
$$

and so on.

4 Concluding remarks

The integration formula for continuous radial functions that was proved in this article is a very special case of a deep result in measure theory called the coarea formula. It states that if $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Lipschitz continuous function and is such that for almost every $r \in \mathbb{R}$, the level set

$$
\{u=r\} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{N} \mid u(x)=r\right\}
$$

is a smooth $(N-1)$-dimensional hypersurface in \mathbb{R}^{N}, and if $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a continuous and integrable function, then

$$
\int_{\mathbb{R}^{N}} f(x)|D u(x)| d x=\int_{-\infty}^{\infty}\left(\int_{\{u=r\}} f(x) d S(x)\right) d r .
$$

(By another deep theorem of Radamacher, Lipschitz continuous functions are differentiable almost everywhere and $D u$ denotes the gradient vector of u.) In particular, choosing $u(x)=|x|$, we get the polar coordinate formula

$$
\int_{\mathbb{R}^{N}} f(x) d x=\int_{0}^{\infty}\left(\int_{\{|x|=r\}} f(x) d S(x)\right) d r
$$

If f is radial, then, following our usual notation, the inner integral just becomes $\widetilde{f}(r)$ times the surface measure of the sphere of radius r which gives $N \omega_{N} r^{N-1} \widetilde{f}(r)$. For a detailed treatment of the coarea (pronounced co-area) formula, the reader is referred to the treatise 'Measure Theory and Fine Properties of Functions' by L. C. Evans and R. F. Gariepy (CRC Press, 1992).

Finally, we can also derive a recursive relation for the volume of the unit ball. Indeed, we can slice up the N-dimensional hemisphere by sections parallel to the base. Then at height $t, 0<t<1$, we get an infinitesimal 'cylinder' with 'base' an ($N-1$)-dimensional ball of radius $\sqrt{1-t^{2}}$ and of 'height' $d t$. Thus,

$$
\omega_{N}=2 \int_{0}^{1} \omega_{N-1}\left(1-t^{2}\right)^{\frac{N-1}{2}} d t=2 \omega_{N-1} \int_{0}^{\frac{\pi}{2}} \cos ^{N} \theta d \theta
$$

Recall that

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{N} \theta d \theta= \begin{cases}\frac{N-1}{N} \frac{N-3}{N-2} \cdots \frac{1}{2} \frac{\pi}{2}, & \text { if } N \text { is even } \\ \frac{N-1}{N} \frac{N-3}{N-2} \cdots \frac{2}{3}, & \text { if } N \text { is odd. }\end{cases}
$$

The reader is referred to an article by K. B. Athreya (cf. Resonance, April 2008) where this idea is developed and the asymptotic behaviour of ω_{N}, as $N \rightarrow \infty$ is examined.

