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Abstract

It is shown that the existence of continuous functions on the interval [0, 1] that
are nowhere differentiable can be deduced from the Baire category theorem.
This approach also shows that there is a preponderance of such functions.
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1 Introduction

The French mathematician Hermite, in a letter written to Stieltjes, dated
May 20, 1893, wrote ‘I turn away with fear and horror from the lamentable
plague of continuous functions which do not have derivatives ...’(cf. Pinkus [6]).
The earliest universally acknowledged explicit example of a continuous func-
tion which is nowhere differentiable is due to Weierstrass (1872) given by

∞∑
n=0

an cos(bnπx)

where ab > 1 + 3
2
π. It is also said that Bolzano constructed such an example

(in the 1830s), which was not published. Since then a number of variants
of Weierstrass’ example have appeared in the literature. Here are some of
them.

•
∞∑
n=0

1

2n
sin(3nx).

• (cf. Hardy [3])
∞∑
n=1

1

n2
sin(n2πx).

• (cf. Rudin [7]) Define

ϕ(x) =

{
x, 0 ≤ x ≤ 1,
2− x, 1 ≤ x ≤ 2

and extend it to all of R by setting ϕ(x+2) = ϕ(x). Then the function
defined by the series

∞∑
n=0

(
3

4

)n

ϕ(4nx)

is again continuous and nowhere differentiable.

In the above three examples, the series are clearly uniformly convergent by
the Weierstrass M-test and so the sum defines a continuous function. One
has to show that it is nowhere differentiable.
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Another type of example is constructed as follows. Consider the space
C[0, 1] (the space of continuous functions on [0, 1]) with the usual norm topol-
ogy generated by the norm

‖f‖∞ = max
x∈[0,1]

|f(x)|.

Let
X = {f ∈ C[0, 1] | f(0) = 0, f(1) = 1}.

Then it is a closed subset of C[0, 1] and is hence a complete metric space in
its own right. For f ∈ X, define

T (f)(x) =



3
4
f(3x), 0 ≤ x ≤ 1

3
,

1
4

+ 1
2
f(2− 3x), 1

3
≤ x ≤ 2

3
,

1
4

+ 3
4
f(3x− 2), 2

3
≤ x ≤ 1.

Then it can be shown that T maps X into itself and that

‖T (f)− T (g)‖∞ ≤
3

4
‖f − g‖∞.

Hence, by the contraction mapping theorem, there exists h ∈ X such that
T (h) = h. It can be shown then that h is nowhere differentiable.

The aim of the present article is to show the existence of continuous but
nowhere differentiable functions, without exhibiting one. The proof, follow-
ing the ideas of Banach [1] and Mazurkiewicz [5], uses the Baire category
theorem which can be stated as follows.

Theorem 1.1 (Baire)Let X be a complete metric space. If {Un}∞n=1 is a
sequence of open and dense sets in X, then

∩∞n=1Un

is also dense in X. �

Equivalently, a complete metric space cannot be the countable union of a
family of closed and nowhere dense sets. In technical parlance, a complete
metric space is said to be of the ‘second category’ (the first category being
topological spaces which are countable unions of closed and nowhere dense
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sets), and hence the word ‘category’ in the name of the theorem. For a
proof, see any text on functional analysis (for instance, see Ciarlet [2] or
Kesavan [4]).

Baire’s theorem is the corner stone of the famous trinity of theorems in
functional analysis, viz. the uniform boundedness principle, the open map-
ping theorem and the closed graph theorem. As a consequence of the uniform
boundedness principle, we can show that for a large class of continuous func-
tions, the Fourier series diverges on a large set of points (see, for instance,
Kesavan [4]).

We will use Baire’s theorem to prove the existence of nowhere differen-
tiable functions in C[0, 1]. This approach also shows that the class of such
functions is quite large. Our presentation is an adaptation of that found in
Ciarlet [2].

2 Approximation by smooth functions

A celebrated theorem of Weierstrass states that any continuous function on
[0, 1] can be uniformly approximated by polynomials. To make this presenta-
tion as self-contained as possible, we will prove a slightly weaker result which
is enough for our purposes, viz. that any continuous function on [0, 1] can be
uniformly approximated by smooth functions.

Consider the function

ρ(x) =

{
e
− 1

1−|x|2 , if |x| < 1,
0, if |x| ≥ 1.

It is not difficult to see that this defines a C∞ function on R whose support is
the closed ball centered at the origin and with unit radius. For ε > 0, define

ρε(x) = (kε)−1ρ
(x
ε

)
where

k =

∫ ∞
−∞

ρ(x) dx =

∫ 1

−1
ρ(x) dx.

Then, it is easy to see that ρε is also C∞ and its support is the closed ball
centered at the origin with radius ε. Further∫ ∞

−∞
ρε(x) dx =

∫ ε

−ε
ρε(x) dx = 1.
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Recall that if f and g are continuous real-valued functions defined on R,
with one of them having compact support, the convolution product f ∗ g
defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(x− y)g(y) dy =

∫ ∞
−∞

g(x− y)f(y) dy

is well defined and is a continuous function. Further, if one of them is in
Ck(R), then f ∗ g ∈ Ck(R) for any 1 ≤ k ≤ ∞. If supp(F ) denotes the
support of a function F , then

supp(f ∗ g) ⊂ supp(f) + supp(g)

where, for subsets A and B of R, we define

A+B = {x+ y | x ∈ A, y ∈ B}.

Proposition 2.1 Let f : R → R be a continuous function with compact
support. Then ρε ∗ f converges uniformly to f as ε→ 0.

Proof: Let K be the support of f . Then K is a compact subset of R.
Without loss of generality, we can assume 0 < ε < 1 so that ρε ∗ f is a C∞
function with support contained in the fixed compact set

{x ∈ R | |x| ≤ 1}+K.

Clearly f is uniformly continuous and so, given η > 0, there exists δ > 0
such that |f(x)− f(y)| < η whenever |x− y| < δ. Now, since the integral of
ρε is unity, we can write

(ρε ∗ f)(x)− f(x) =

∫ ε

−ε
(f(x− y)− f(x))ρε(y) dy.

Thus, if ε < δ then

|(ρε ∗ f)(x)− f(x)| ≤
∫ ε

−ε
|f(x− y)− f(x)|ρε(y) dy ≤ η

for all x and this completes the proof. �

Corollary 2.1 Let f ∈ C[0, 1]. Then f can be uniformly approximated by
smooth functions.
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Proof: Given f ∈ C[0, 1], we can extend it to a continuous function with
compact support in R. For example, define

f̃(x) =


0, if x < −1 or if x > 2,
(x+ 1)f(0), if x ∈ [−1, 0],
f(x), if x ∈ [0, 1],
(2− x)f(1), if x ∈ [1, 2].

−1 0 1 2

Now f̃ can be uniformly approximated by smooth functions in R and so their
restrictions to [0, 1] will approximate f uniformly on [0, 1]. �

Proposition 2.2 Let f ∈ C[0, 1]. Let ε > 0 and n, a positive integer, be
given. Then there exists a piecewise linear continuous function g, defined on
[0, 1] such that ‖f − g‖∞ < ε and such that |g′(t)| > n at all points where the
derivative exists.

Proof: In view of the corollary above, we can assume that f is a smooth
function defined on [0, 1].
Step 1. Since f is smooth, f ′ is bounded in [0, 1]. Let |f ′(x)| ≤ M for all
x ∈ [0, 1]. Since f is continuous on [0, 1], it is uniformly continuous and so
there exists δ > 0 such that, whenever |x−y| < δ, we have |f(x)−f(y)| < ε

4
.

Now, choose h > 0 such that

h < min

{
δ,

ε

2(M + n)

}
.

Step 2. Now choose a partition

P : 0 = t0 < t1 < · · · < tk = 1

such that
max

0≤i≤k−1
(ti+1 − ti) ≤ h.
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Let g : [0, 1] → R be a piecewise linear and continuous function, defined on
each sub-interval [ti, ti+1], 0 ≤ i ≤ k − 1, as follows:

g(ti) = f(ti) + (−1)i ε
4
,

g(ti+1) = f(ti+1) + (−1)i+1 ε
4
,

g(t) = ti+1−t
ti+1−ti g(ti) + t−ti

ti+1−ti g(ti+1), ti < t < ti+1.

The function g is differentiable except at the points {t1, · · · , tk−1}.

f

g

Step 3. For t ∈ [ti, ti+1], 0 ≤ i ≤ k − 1, we have

g(t)− f(t) =
ti+1 − t
ti+1 − ti

(g(ti)− f(t)) +
t− ti
ti+1 − ti

(g(ti+1)− f(t))

so that

|g(t)− f(t)| ≤ |f(ti)− f(t)|+ |f(ti+1)− f(t)|+ ε

2
< ε

since |t − ti| and |t − ti+1| are both less than, or equal to h < δ. Thus, it
follows that ‖f − g‖∞ < ε.
Step 4. For any t ∈ (ti, ti+1), 0 ≤ i ≤ k − 1, we have

g′(t) =
f(ti+1)− f(ti) + (−1)i+1 ε

2

ti+1 − ti
= f ′(ξi) +

(−1)i+1 ε
2

ti+1 − ti
where ξi ∈ (ti, ti+1). Thus, by our choice of h, we have

|g′(t)| =
∣∣∣ (−1)i+1 ε

2

ti+1−ti + f ′(ξi)
∣∣∣

≥ ε
2(ti+1−ti) − |f

′(ξi)|
≥ ε

2h
−M

> n

which completes the proof. �
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3 The main result

Proposition 3.1 Let f ∈ C[0, 1] be differentiable at some point a ∈ [0, 1].
Then, there exists a positive integer N such that

sup
h6=0

∣∣∣∣f(a+ h)− f(a)

h

∣∣∣∣ ≤ N.

Proof: Since f is differentiable at a ∈ [0, 1], there exists h0 > 0 such that
for all 0 < |h| ≤ h0, we have∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ ≤ 1.

Thus, for all 0 < |h| ≤ h0, we have∣∣∣∣f(a+ h)− f(a)

h

∣∣∣∣ ≤ 1 + |f ′(a)|.

If |h| ≥ h0, then trivially∣∣∣∣f(a+ h)− f(a)

h

∣∣∣∣ ≤ 2‖f‖∞
h0

.

Thus we only need to take

N ≥ max

{
1 + |f ′(a)|, 2‖f‖∞

h0

}
. �

Let us now define, for each positive integer n,

An =

{
f ∈ C[0, 1] | sup

h6=0

∣∣∣∣f(a+ h)− f(a)

h

∣∣∣∣ ≤ n for some a ∈ [0, 1]

}
.

Proposition 3.2 For each positive integer n, the set An is closed in C[0, 1].

Proof: Let {fk} be a sequence in An such that fk → f in C[0, 1]. Then,
there exists a sequence {ak} in [0, 1] such that, for each k,

sup
h6=0

∣∣∣∣fk(ak + h)− fk(ak)

h

∣∣∣∣ ≤ n.
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Let {akl} be a convergent subsequence, converging to a ∈ [0, 1].
Let h 6= 0 be given. Choose hkl such that akl + hkl = a + h.Thus the

sequence {hkl} converges to h 6= 0 and so we may assume, without loss of
generality, that it is a sequence of non-zero real numbers. Now

|f(a+ h)− fkl(akl + hkl)| = |(f − fkl)(a+ h)| ≤ ‖f − fkl‖∞.

Also

|f(a)−fkl(akl)| ≤ |f(a)−f(akl)|+|f(akl)−fkl(akl)| ≤ |f(a)−f(akl)|+‖f−fkl‖∞.

By the continuity of f and the convergence of {fkl} to f , we then deduce
that ∣∣∣∣f(a+ h)− f(a)

h

∣∣∣∣ = lim
l→∞

∣∣∣∣fkl(akl + hkl)− fkl(akl)
hkl

∣∣∣∣ ≤ n

which shows that f ∈ An as well, which completes the proof. �

Proposition 3.3 For each positive integer n, the set An has empty interior.

Proof: Given ε > 0, a positive integer n and a function f ∈ An, let g be
constructed as in the proof of Proposition 2.2. Then it is clear that the ball
centered at f and of radius ε in C[0, 1] contains g and that g 6∈ An. This
completes the proof. �

We can now prove the main theorem.

Theorem 3.1 There exist continuous functions on the interval [0, 1] which
are nowhere differentiable. In fact the collection of all such functions forms
a dense subset of C[0, 1].

Proof: By Baire’s theorem and the two preceding propositions, it follows
that

C[0, 1] 6= ∪∞n=1An.

From the definition of the sets An and from Proposition 3.1, it follows that
every function in

C[0, 1]\ ∪∞n=1 An = ∩∞n=1(C[0, 1]\An)

is nowhere differentiable and also that this set is dense, since it is the count-
able intersection of open dense sets. �

In particular, it follows that every continuous function on [0, 1], irrespec-
tive of its smoothness, is the uniform limit of functions that are nowhere
differentiable!
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