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Abstract

Korovkin’s theorem is an abstract result in approximation theory which gives
conditions for uniform approximation of continuous functions on a compact
metric space using sequences of positive linear operators (on the space of
continuous functions). It gives simple proofs of some major approximation
theorems in analysis like the Weierstrass approximation theorem and Fejér’s
theorem for the Cesàro summability of Fourier series. We state and prove
a measure theoretic version of Korovkin’s theorem which, to the best of our
knowledge, seems new and which is very simple to establish. We also show
how the theorems mentioned above can be deduced from this.

1 Introduction

The theorem of Korovkin is an abstract result which uses sequences of pos-
itive linear operators on the space of continuous real valued functions on
a compact metric space to provide uniform approximations of continuous
functions. It is stated as follows.

Theorem 1.1 (Korovkin [5]) Let (X, d) be a compact metric space and let
C(X) denote the space of continuous real valued functions on X with the sup-
norm. Let An : C(X)→ C(X) be a sequence of linear maps which are positive
(i.e. if f ∈ C(X) is such that f(x) ≥ 0 for all x ∈ X, then (Anf)(x) ≥ 0 for
all x ∈ X). Consider the following hypotheses:
(H1) If f0(x) = 1 for all x ∈ X, then

lim
n→∞

‖Anf0 − f0‖ = 0.

(H2) Let ϕ : [0,∞) → R be a continuous function such that ϕ(t) > 0 for
t > 0 and, for x ∈ X, let

ψx(y)
def
= ϕ(d(x, y)), y ∈ X.

Then

lim
n→∞

(
sup
x∈X
|(Anψx)(x)|

)
= 0.

If (H1) and (H2) hold, then for every f ∈ C(X), we have

lim
n→∞

‖Anf − f‖ = 0. �



A proof of this result can be found in Ciarlet [3]. Two important con-
sequences of this result are known as Korovkin’s first theorem (also known as
the Korovkin-Bohman theorem or just as Bohman’s theorem - cf. Bohman [2])
and Korovkin’s second theorem.

Theorem 1.2 (Korovkin’s first theorem) Let An : C[0, 1] → C[0, 1] be a se-
quence of positive linear maps such that

lim
n→∞

‖Anfi − fi‖ = 0 for i = 0, 1, 2,

where fi(t) = ti for i = 0, 1, 2. Then for every f ∈ C[0, 1] we have

lim
n→∞

‖Anf − f‖ = 0. �

Theorem 1.3 (Korovkin’s second theorem) Let Cper[−π, π] denote the space
of all continuous 2π-periodic real valued functions defined on the interval
[−π, π]. Let An : Cper[−π, π] → Cper[−π, π] be a sequence of positive linear
maps such that

lim
n→∞

‖Angi − gi‖ = 0 for i = 0, 1, 2,

where, for all t ∈ [−π, π],

g0(t) = 1, g1(t) = cos t and g2(t) = sin t.

Then for every f ∈ Cper[−π, π], we have

lim
n→∞

‖Anf − f‖ = 0. �

A beautiful application of Korovkin’s first theorem is a simple proof of
the Weierstrass approximation theorem wherein a continuous function on
[0, 1] is uniformly approximated by a sequence of Bernstein polynomials. An
application of the second theorem of Korovkin is a proof of Fejér’s theorem
which establishes the uniform Cesàro summability of the Fourier series of a
continuous 2π-periodic function on [−π, π].

For a proof of all these results see Altomare [1] or Ciarlet [3].
In this article, we will present a measure theoretic version of Korovkin’s

theorem and derive the Weierstrass and Fejér theorems from it. We will also
show that the original theorem of Korovkin follows from it. This version
is very easy to prove and is a nice example of the technique of ‘divide and
rule’ which is very useful in estimating integrals: we split an integral over
two complementary sets such that on one of them we control the integrand,
while the other set, where we have no control, is of small measure.

Throughout the sequel the symbol N will stand for the set of natural numbers
{1, 2, 3, · · ·}.
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2 Korovkin’s theorem

Theorem 2.1 Let (X, d) be a compact metric space. Let ϕ : [0,∞)→ [0,∞)
be a continuous function such that ϕ(t) > 0 for t > 0. Let {µxn}x∈X,n∈N be a
collection of finite (Borel) measures on X. Define:

ψn(x) =

∫
X

ϕ(d(x, y)) dµxn(y) for x ∈ X.

Assume that the following hypotheses hold:
(H3) µxn(X)→ 1 uniformly on X as n→∞;
(H4) ψn(x)→ 0 uniformly on X as n→∞.
Then for any f ∈ C(X), we have that∫

X

f(y) dµxn(y) → f(x)

uniformly on X as n→∞.

Proof: Since X is compact, supx,y∈X d(x, y) is finite and is attained. Let

diam(X) = max
x,y∈X

d(x, y).

For 0 < δ < diam(X), let

α(δ)
def
= min

t∈[δ,diam(X)]
ϕ(t).

Notice that α(δ) > 0 for δ > 0. Given δ > 0 and x ∈ X, define

Aδ(x) = {y ∈ X | d(x, y) ≥ δ}.

Then, for any x ∈ X and for any n ∈ N, we have

α(δ)µxn(Aδ(x)) ≤
∫
Aδ(x)

ϕ(d(x, y)) dµxn(y) ≤ ψn(x). (2.1)

Since f ∈ C(X) is uniformly continuous, given η > 0, we can find δ > 0 such
that |f(x)− f(y)| < η whenever d(x, y) < δ.

Set

∆n(x) =

∣∣∣∣∫
X

f(y) dµxn(y)− f(x)

∣∣∣∣ .
Now∫

X

f(y) dµxn(y)−f(x) =

∫
X

(f(y)−f(x)) dµxn(y)+f(x)(µxn(X)−1). (2.2)

To estimate this, we split the integral
∫
X
|f(y)−f(x)| dµxn(y) into two parts:

one over Aδ(x) and the other over its complement. By the choice of δ, we
have∫
X\Aδ(x)

|f(y)−f(x)| dµxn(y) < ηµxn(X\Aδ(x)) ≤ ηµxn(X) = η+η(µxn(X)−1).

(2.3)
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On the other hand, using (2.1), we get∫
Aδ(x)

|f(y)− f(x)| dµxn(y) ≤ 2‖f‖µxn(Aδ(x)) ≤ 2‖f‖
α(δ)

ψn(x), (2.4)

where ‖f‖ stands for the usual sup-norm of f . Combining (2.2), (2.3) and
(2.4), we get

∆n(x) ≤ η +
2‖f‖
α(δ)

ψn(x) + (η + ‖f‖)|µxn(X)− 1|.

Now, given ε > 0, first choose η < ε
3

and then fix δ using the uniform
continuity of f . Now, using hypotheses (H3) and (H4), we can find N ∈ N
such that for all n ≥ N and for all x ∈ X, we have

(η + ‖f‖)|µxn(X)− 1| < ε
3
,

2‖f‖
α(δ)

ψn(x) < ε
3
,

which yields
∆n(x) < ε for all x ∈ X,n ≥ N.

This completes the proof. �

We can deduce the original version of Korovkin’s theorem (Theorem 1.1)
from the above version. Indeed, let {An} be a sequence of positive linear
maps from C(X) into itself. For each x ∈ X, the map f 7→ (Anf)(x) defines
a positive linear functional on C(X). Then, by the Riesz representation
theorem (cf. Rudin [7]), there exists a finite Borel measure µxn on X such
that

(Anf)(x) =

∫
X

f(y) dµxn(y).

Now it is clear to see that the hypotheses (H1) and (H2) are exactly the same
as hypotheses (H3) and (H4) respectively. Thus Theorem 1.1 is the same as
Theorem 2.1 in this context.

3 Weierstrass’ approximation theorem

Let X = [0, 1]. Let δx denote the Dirac measure concentrated at x ∈ X, i.e.
if E ⊂ X, then

δx(E) =

{
1 if x ∈ E,
0 if x 6∈ E.

Define, for n ∈ N and for t ∈ [0, 1],

µtn =
n∑
k=0

(
n
k

)
tk(1− t)n−kδ k

n
.

Then

µtn(X) =
n∑
k=0

(
n
k

)
tk(1− t)n−k = (t+ 1− t)n = 1.

4



Thus (H3) is trivially satisfied. Now

∫
X
s dµtn(s) =

∑n
k=0

k
n

(
n
k

)
tk(1− t)n−k

=
∑n

k=1

(
n− 1
k − 1

)
tk(1− t)n−k

= t.

In the same way (exercise!) we can see that∫
X

s2 dµtn(s) =
1

n
((n− 1)t2 + t).

Now let us choose ϕ(t) = t2. Then

ψn(t) =
∫
X

(t− s)2 dµtn(s)

= t2µtn(X)− 2t
∫
X
s dµtn(s) +

∫
X
s2 dµtn(s)

= t−t2
n
.

Since, for all t ∈ [0, 1], we have that t− t2 ≤ 1
4
, it follows that

ψn(t) ≤ 1

4n

for all t ∈ [0, 1] which establishes the validity of the hypothesis (H4). Thus,
by Theorem 2.1, we have that for all f ∈ C[0, 1],∫

X

f(s) dµtn(s) → f(t)

uniformly on [0, 1] as n→∞. In other words,

Bn(t)
def
=

n∑
k=0

f

(
k

n

)(
n
k

)
tk(1− t)n−k → f(t)

uniformly on [0, 1] as n→∞. The functions Bn(t) are called the Bernstein
polynomials. This proves the Weierstrass approximation theorem which
states that any continuous function on [0, 1] (or, for that matter, any finite
interval [a, b]) can be uniformly approximated in that interval by a sequence
of polynomials.

Probabilistic proofs of Weierstrass’ theorem also proceed on similar lines
(cf. Parzen [6]).

We can easily prove the following (equivalent) version of Bohman’s theo-
rem (Theorem 1.2) using the same kind of arguments as in this section.
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Theorem 3.1 Let {µtn}t∈[0,1],n∈N be a collection of finite (Borel) measures
on [0, 1] such that ∫

[0,1]

si dµtn(s) → ti

uniformly on [0, 1] as n → ∞ for i = 0, 1, 2. Then for any f ∈ C[0, 1], we
have that ∫

[0,1]

f(s) dµtn(s) → f(t)

uniformly on [0, 1] as n→∞.

Proof: Exercise ! �

4 Fejér’s theorem

Let us denote by Cper[−π, π] the space of continuous 2π periodic real valued
functions defined on the interval [−π, π]. If f ∈ Cper[−π, π], its Fourier series
is given by

f(x) ∼ a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx),

where
ak = 1

π

∫ π
−π f(t) cos kt dt, for k ∈ {0} ∪ N,

bk = 1
π

∫ π
−π f(t) sin kt dt, for k ∈ N.

(4.5)

For negative integers k, we set ak = a−k, bk = −b−k and also set b0 = 0. Let
{sn(x)} denote the sequence of partial sums of the Fourier series for f :

sn(x) =
a0
2

+
n∑
k=1

(ak cos kx+ bk sin kx).

If we set

ck =
1

2
(ak − ibk) =

1

2π

∫ π

−π
f(t)e−ikt dt,

where i2 = −1, we get

sn(x) =
n∑

k=−n

cke
ikx =

1

2π

∫ π

−π
f(t)Dn(x− t) dt

where

Dn(t)
def
=

n∑
k=−n

eikt.

This is called the Dirichlet kernel. Since f and Dn are both 2π-periodic,
we get, by a simple change of variable, that

sn(x) =
1

2π

∫ π

−π
f(t)Dn(x− t) dt =

1

2π

∫ π

−π
f(x− t)Dn(t) dt.
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Lemma 4.1 Let n ≥ 0 be a non-negative integer. Then

Dn(t) =

{
sin(n+ 1

2
)t

sin t
2

if t 6= 2mπ,m ∈ N ∪ {0},
2n+ 1 if t = 2mπ,m ∈ N ∪ {0}.

(4.6)

Further
1

2π

∫ π

−π
Dn(t) dt = 1. (4.7)

Proof: If t = 2mπ for m ∈ N∪ {0}, then, Dn(t) = 2n+ 1 by definition. Let
us now assume that t 6= 2mπ,m ∈ N ∪ {0}. We have

(eit − 1)Dn(t) = ei(n+1)t − e−int.

Multiplying both sides of this relation by e−i
t
2 , we immediately deduce (4.6).

The relation (4.7) follows from the following:

1

2π

∫ π

−π
eikt dt =

{
1 if k = 0,
0 ifk 6= 0. �

Now let us define the Fejér kernel for a non-negative integer n:

Kn(t)
def
=

1

n+ 1

n∑
k=0

Dk(t).

Lemma 4.2 Let n ≥ 0 be a non-negative integer. Then the following state-
ments are valid.
(i) If t 6= 2mπ,m ∈ N ∪ {0},

Kn(t) =
1

n+ 1

1− cos(n+ 1)t

1− cos t
=

1

n+ 1

sin2 (n+1)t
2

sin2 t
2

≥ 0. (4.8)

(ii)
1

2π

∫ π

−π
Kn(t) dt = 1. (4.9)

(iii) If 0 < δ ≤ |t| ≤ π, then

0 ≤ Kn(t) ≤ 1

(n+ 1) sin2 δ
2

. (4.10)

Proof: Notice that (cf. proof of Lemma 4.1)

(e−it − 1)(eit − 1)(n+ 1)Kn(t) = (e−it − 1)
∑n

k=0(e
i(k+1)t − e−ikt)

= 2− ei(n+1)t − e−i(n+1)t,

from which we immediately deduce (4.8). The relation (4.9) follows directly
from the definition of Kn(t) and the relation (4.7). Relation (4.10) is a direct
consequence of (4.8). �
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Given f ∈ Cper[−π, π], let us set

σn(x) =
1

n+ 1
(s0(x) + s1(x) + · · ·+ sn(x)).

It then follows from the expression for the partial sums of the Fourier series
sn(x) that

σn(x) =
1

2π

∫ π

−π
f(t)Kn(x− t) dt =

1

2π

∫ π

−π
f(x− t)Kn(t) dt. (4.11)

The last equality again follows from the fact that f is 2π-periodic, by a simple
change of variable.

Based on an analysis of the Dirichlet kernel, a nice application of the
Banach-Steinhaus theorem (uniform boundedness principle) in functional
analysis shows that there exists a continuous 2π-periodic function on [−π, π]
(in fact, a dense Gδ set of functions in Cper[−π, π]) whose Fourier series di-
verges at the point x = 0. The same argument can be used to show the
divergence of the Fourier series at any point in (−π, π) for a large set of
functions. Combining this argument with the Baire category theorem, we
can, in fact, show that there exists a dense Gδ set of functions in Cper[−π, π]
for each of which the Fourier series will diverge on a dense Gδ set of points in
(−π, π). In a metric space with no isolated points, a dense Gδ set has to be
uncountable. Thus, we have that there exist uncountably many continuous
2π-periodic functions on [−π, π] such that for each one of them, the Fourier
series diverges at an uncountably many number of points in [−π, π]. The
reader is referred to Kesavan [4] or to Rudin [7] for details.

Thus, without further hypotheses on a continuous 2π-periodic function,
one cannot expect its Fourier series to converge to the value of the function
at any point. However, we have the following result of uniform convergence
of a sequence of trigonometric polynomials to a continuous 2π-periodic func-
tion. The existence of such an approximation is guaranteed by the Stone-
Weierstrass theorem.

Theorem 4.1 (Fejér) Let f ∈ Cper[−π, π]. With the notations established
earlier, we have that σn → f uniformly on [−π, π].

Proof: We will give a proof based on Korovkin’s theorem. Notice that, in
view of (4.11), we need to show that for any 2π-periodic function f defined
on [−π, π],

1

2π

∫ π

−π
f(τ)Kn(θ − τ) dτ

converges uniformly to f(θ) as θ varies over [−π, π].
Consider the compact metric space S1, the unit circle in the plane with

centre at the origin, equipped with the usual euclidean distance metric. Then,
any point x ∈ S1 can be written as x = (cos θ, sin θ), where θ ∈ [−π, π]. It is
then clear that C(S1) is in bijective correspondence with Cper[−π, π] via the

mapping f 7→ f̃ , where

f̃(θ) = f(x), x = (cos θ, sin θ).
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Let us now define the measure µxn on S1, where n ∈ N and x = (cos θ, sin θ) ∈
S1 such that the relation∫
S1

f(y) dµxn(y) =
1

2π

∫ π

−π
f̃(τ)Kn(θ − τ) dτ =

1

2π

∫ π

−π
f̃(θ − τ)Kn(τ) dτ

is valid for any f ∈ C(S1). Then, for any x ∈ S1, relation (4.9) gives

µxn(S1) =
1

2π

∫ π

−π
Kn(τ) dτ = 1.

Thus hypothesis (H3) is trivially satisfied.
Once again, let us take ϕ(t) = t2. Then, if x = (cos θ, sin θ) and y =

(cos τ, sin τ) are points in S1, elementary geometry shows that

|x− y|2 = 4 sin2

(
θ − τ

2

)
.

Now
4 sin2

(
θ−τ
2

)
= 2− 2 cos(θ − τ)
= 2− 2 cos θ cos τ − 2 sin θ sin τ.

Thus

ψn(x) =
∫
X
|x− y|2 dµxn(y)

= 2
2π

∫ π
−πKn(θ − τ) dτ − 2 cos θ

2π

∫ π
−π cos τKn(θ − τ) dτ

−2 sin θ
2π

∫ π
−π sin τKn(θ − τ) dτ.

By vitrue of (4.9), the first term on the right-hand side is equal to 2. Now
notice that

1

2π

∫ π

−π
cos τKn(θ − τ) dτ

is nothing but σn(θ) when f(θ) = cos(θ). But the Fourier series of the cosine
function consists of just one term viz. cos θ ! Consequently when f is the
cosine function, we have that

σn(θ) =
n

n+ 1
cos θ.

Hence the second term on the right-hand side is equal to

2n

n+ 1
cos2 θ.

By an identical reasoning, the third term reduces to

2n

n+ 1
sin2 θ.

Using the identity cos2 θ + sin2 θ = 1, we finally get

ψn(x) = 2

(
1− n

n+ 1

)
(cos2 θ + sin2 θ) =

2

n+ 1
.
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Thus ψn converges uniformly on S1 to zero and so we can now apply Ko-
rovkin’s theorem (Theorem 2.1) to conclude the proof. �

Remark 4.1 The proof of Korovkin’s second theorem (Theorem 1.3) follows
the same lines as the above proof (cf. Ciarlet [3]). �

Remark 4.2 We do not really need Korovkin’s theorem to prove Fejér’s
theorem. If f ∈ Cper[−π, π], then using (4.11) and (4.9), we can write

σn(x)− f(x) =
1

2π

∫ π

−π
(f(x− t)− f(x))Kn(t) dt.

Now we can easily estimate this integral using the ‘divide and rule’ principle
and statement (iii) of Lemma 4.2 to deduce the uniform convergence (exer-
cise!). �

Remark 4.3 A series is said to be Cesàro summable if the sequence
of averages of the partial sums converges. Thus the Fourier series of f ∈
Cper[−π, π] is uniformly Cesàro summable to f over [−π, π]. �
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