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Abstract

The Hahn-Banach theorem is one of the major theorems proved in any first
course on Functional Analysis. It has plenty of applications, not only within
the subject itself, but also in other areas of mathematics like optimization,
partial differential equations and so on. This article will give a brief overview
of the Hahn-Banach theorem, its ramifications and indicate some applica-
tions.
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1 Introduction

One of the major theorems that we encounter in a first course on Functional
Analysis is the Hahn-Banach theorem. Together with the Banach-Steinhaus
theorem, the open mapping theorem and the closed graph theorem, we have
a very powerful set of theorems with a wide range of applications. The latter
three theorems are all dependent on the completeness of the spaces involved,
whereas the Hahn-Banach theorem does not demand this. It comes in two
versions, analytic and geometric. The analytic version concerns the exten-
sion of continuous linear functionals from a subspace to the whole space with
prescribed properties while the geometric version deals with the separation of
disjoint convex sets using hyperplanes. Both these versions have applications
outside Functional Analysis, for example in the theory of optimization and
in the theory of partial differential equations, to name a few.

In this article we will give an overview of the Hahn-Banach theorem and
some of its applications. We will not give detailed proofs of the main theorems
since they can be found in any book on Functional Analysis.

2 The Hahn-Banach theorems

The analytic and geometric versions of the Hahn-Banach theorem follow from
a general theorem on the extension of linear functionals on a real vector space.

Theorem 2.1 (Hahn-Banach Theorem) Let V be a vector space over R.
Let p : V → R be a mapping such that

p(αx) = αp(x)
p(x+ y) ≤ p(x) + p(y)

}
(2.1)

for all x and y ∈ V and for all α > 0 in R. Let W be a subspace of V and
let g : W → R be a linear map such that

g(x) ≤ p(x)

for all x ∈ W . Then, there exists a linear extension f : V → R of g (i.e.
f(x) = g(x) for all x ∈ W ) which is such that

f(x) ≤ p(x)

for all x ∈ V. �
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The above theorem is proved using Zorn’s lemma. Let P denote the collection
of all pairs (Y, h), where Y is a subspace of V containing W and h : Y → R
a linear map which is an extension of g and which is also such that

h(x) ≤ p(x)

for all x ∈ Y . Clearly P is non-empty, since (W, g) ∈ P . Consider the partial
order defined on P by

(Y, h) � (Ỹ , h̃)

if Y ⊂ Ỹ and h̃ is a linear extension of h.

We show that any chain in P has an upper bound and so, by Zorn’s
lemma, there exists a maximal element (Z, f) in P . We then show that
Z = V which will complete the proof.

There are two principal examples of the mapping p mentioned in the
above theorem.

Given a normed linear space X, we will denote its dual, the space of con-
tinuous linear functionals on X, by the symbol X∗.

Example 2.1 Let V be a normed linear space and let W be a subspace of
V . Let g ∈ W ∗ be a continuous linear functional. Then p(x) = ‖g‖W ∗‖x‖
satisfies (2.1). Applying the theorem above to this case, we get the following
result.

Theorem 2.2 (Hahn-Banach Theorem) Let V be a normed linear space
over R. Let W be a subspace of V and let g : W → R be a continuous linear
functional on W . Then there exists a continuous linear extension f : V → R
of g such that

‖f‖V ∗ = ‖g‖W ∗ . �

This result is also true for normed linear spaces over C. If X is a normed
linear space over the field of complex numbers, then let us write it in terms
of its real and imaginary parts:

f = g + ih,

where i stands for a square root of −1. Then g and h are linear functionals,
as long as we restrict ourselves to scalar multiplication by reals. Now, since
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f(ix) = if(x) for any x ∈ X, it follows easily that h(x) = −g(ix). Thus, for
any x ∈ X, we have,

f(x) = g(x)− ig(ix).

In other words, the real part of a linear functional over C is enough to de-
scribe the functional fully. If we restrict ourselves to scalar multiplication by
reals only and consider X as a real normed linear space, then g is a contin-
uous linear functional and we can also show that ‖g‖ = ‖f‖X∗ .

Thus, given a normed linear space V over C, a subspace W and a con-
tinuous linear functional g on W , we can write g(x) = h(x) − ih(ix) for
any x ∈ X, where h is a real valued linear functional over R. Then, by the
previous theorem, we can find an extension h̃ of h and define

f(x) = h̃(x)− ih̃(ix).

Then it is easy to check that f is a norm preserving extension of g to all of
V . Thus we have the following theorem.

Theorem 2.3 (Hahn-Banach Theorem) Let V be a normed linear space
over C. Let W be a subspace of V and let g : W → C be a continuous linear
functional on W . Then there exists a continuous linear extension f : V → C
of g such that

‖f‖V ∗ = ‖g‖W ∗ . �

Example 2.2 The next example of a mapping p satisfying (2.1) is called the
Minkowski functional of an open convex subset of a real normed linear
space which containes the origin.

Proposition 2.1 Let C be an open and convex set in a real normed linear
space V such that 0 ∈ C. For x ∈ V , set

p(x) = inf{α > 0 | α−1x ∈ C}.

Then, there exists M > 0 such that

0 ≤ p(x) ≤M‖x‖ (2.2)

for all x ∈ V . We also have

C = {x ∈ V | p(x) < 1}. (2.3)

Further, p satisfies (2.1).
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Proof: Since 0 ∈ C and C is open, there exists an open ball B(0; 2r),
centered at 0 and of radius 2r, contained in C. Now, if x ∈ V , we have
rx/‖x‖ ∈ C and so, by definition, p(x) ≤ 1

r
‖x‖ which proves (2.2).

Let x ∈ C. Since C is open, and since 0 ∈ C, there exists ε > 0 such
that (1 + ε)x ∈ C. Thus, p(x) ≤ (1 + ε)−1 < 1. Conversely, let x ∈ V such
that p(x) < 1. Then, there exists 0 < t < 1 such that 1

t
x ∈ C. Then, as C

is convex, we also have t1
t
x+ (1− t)0 ∈ C, i.e. x ∈ C. This proves (2.3).

If α > 0, it is easy to see that p(αx) = αp(x). This is the first relation in
(2.1). Now, let x and y ∈ V . Let ε > 0. Then

1

p(x) + ε
x ∈ C and

1

p(y) + ε
y ∈ C.

Set

t =
p(x) + ε

p(x) + p(y) + 2ε

so that 0 < t < 1. Then, as C is convex,

t
1

p(x) + ε
x+ (1− t) 1

p(y) + ε
y =

1

p(x) + p(y) + 2ε
(x+ y) ∈ C

which implies that
p(x+ y) ≤ p(x) + p(y) + 2ε

from which the second relation in (2.1) follows since ε was chosen arbitrarily.
�

Let C be a non-empty open convex set in a real normed linear space V
and assume that 0 ∈ C and x0 6∈ C. Let W be the one-dimensional space
spanned by x0. Define g : W → R by

g(tx0) = t.

By definition of the Minkowski functional, since 1
t
tx0 = x0 6∈ C, we have that

g(tx0) = t ≤ p(tx0)

for t > 0. Since the Minkowski functional is non-negative, this inequality
holds trivially for t ≤ 0 as well. Thus, by the Hahn-Banach theorem, there
exists a linear extension f of g to the whole of V such that, for all x ∈ V ,

f(x) ≤ p(x) ≤ M‖x‖
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(cf. (2.2)) which yields |f(x)| ≤M‖x‖, and so f is continuous as well. Now,
if x ∈ C,

f(x) ≤ p(x) < 1 = g(x0) = f(x0)

by (2.3).

It is easy to see that the condition 0 ∈ C can be relaxed, once we have
the above result, to prove the existence of f ∈ V ∗ such that f(x) < f(x0) for
every x ∈ C. Using this one can prove the following first geometric version
of the Hahn-Banach theorem.

Theorem 2.4 (Hahn-Banach Theorem) Let A and B be two non-empty
and disjoint convex subsets of a real normed linear space V . Assume that A
is open. Then, there exists a closed hyperplane which separates A and B, i.e.
there exists f ∈ V ∗ and α ∈ R such that

f(x) ≤ α ≤ f(y)

for all x ∈ A and y ∈ B.

In other words, given two disjoint non-empty convex sets, one of them being
open, we can separate the two by means of a (closed) hyperplane.

Consider, for example, the plane R2. Let

A = {(x, y) | x > 0, y > 0, xy > 1}

and let
B = {(x, y) | y ≤ 0}.

These are two disjoint, oonvex sets and while A is open, we have that B is
closed. They can be separated by the line {(x, y) | y = 0}.

Notice we cannot separate them strictly, i.e. there is no line in the
plane separating the two sets and at a positive distance from both. On
the other hand, if we set A = {(x, y) | xy ≥ 1, 1 ≤ x ≤ 2}, then the line
{(x, y) | y = 1

2
} separates the two sets srictly.

The following theorem can be proved starting from the preceding one.
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Theorem 2.5 (Hahn-Banach Theorem) Let A and B be non-empty and
disjoint convex sets in a real normed linear space V . Assume that A is closed
and that B is compact. Then A and B can be separated strictly by a closed
hyperplane, i.e. there exists f ∈ V ∗, α ∈ R and ε > 0 such that

f(x) ≤ α− ε and f(y) ≥ α + ε

for all x ∈ A and y ∈ B �.

In case of complex normed linear spaces, the above geometric versions
are true with f being replaced by Re(f), the real part of f .

The geometric versions are also true in more general settings. A topo-
logical vector space is a vector space equipped with a Hausdorff topology
such that vector addition and scalar multiplication are continuous opera-
tions. Such a space is called locally convex if each point admits a neigh-
bourhood system made up of convex sets. The geometric versions of the
Hahn-Banach theorems mentioned above are true for locally convex topolog-
ical vector spaces (cf. Rudin [5]).

3 Richness of the dual space

One of the main consequences of the Hahn-banach theorem(s) is the fact that
the dual of a normed linear space is well endowed with functionals and hence
merits careful study.

Proposition 3.1 Let V be a normed linear space and x0 ∈ V a non-zero
vector. Then, there exists f ∈ V ∗ such that ‖f‖ = 1 and f(x0) = ‖x0‖.

Proof: Let W be the one-dimensional space spanned by x0. Define g(αx0) =
α‖x0‖. Then ‖g‖W ∗ = 1. Hence, there exists f ∈ V ∗ such that ‖f‖V ∗ = 1
and which extends g. Hence f(x0) = g(x0) = ‖x0‖. �

If V is a normed linear space and if x and y are distinct points in V , then,
clearly, there exists f ∈ V ∗ such that f(x) 6= f(y) (consider x0 = x− y 6= 0).
We say that V ∗ separates points of V .

Proposition 3.2 Let W be a subspace of a normed linear space V . Assume
that W 6= V . Then, there exists f ∈ V ∗ such that f 6≡ 0 and such that
f(x) = 0 for all x ∈ W .
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Proof: Let x0 ∈ V \W . Let A = W and B = {x0}. Then A is closed, B is
compact and they are non-empty and disjoint convex sets. Thus, there exists
f ∈ V ∗ and α ∈ R such that for all x ∈ W ,

Re(f)(x) < α < Re(f)(x0).

(We assume here that the base field is C; if it is R, then we can write f
instead of Re(f).) Since W is a linear subspace, it follows that for all λ ∈ R,
we have λf(x) < α for all x ∈ W . Now, since 0 ∈ W , we have α > 0. On
the other hand, setting λ = n, we get that, for any x ∈ W ,

Re(f)(x) <
α

n

whence we see that Re(f)(x) ≤ 0 for all x ∈ W . Again, if x ∈ W , we also
have −x ∈ W and so Re(f)(−x) ≤ 0 as well and so Re(f)(x) = 0 for all
x ∈ W and Ref(x0) > α > 0. As already observed, the real part of a func-
tional determines the functional and so the proof is complete. �

The above proposition gives us a very powerful tool for determining the
density of subspaces of a normed linear space. Let V be a normed linear
space and let W be a subspace. Assume that we have a continuous linear
functional on V which vanishes on W . If we can show that it then vanishes on
all of V , it follows from the preceding proposition that W = V , or, in other
words, that W is dense in V . This is frequently used in several situations.

Proposition 3.3 Let V be a normed linear space. Let x ∈ V . Then

‖x‖ = sup
f∈V ∗, ‖f‖≤1

|f(x)| = max
f∈V ∗, ‖f‖≤1

|f(x)|. (3.1)

Proof: Clearly, |f(x)| ≤ ‖f‖ ‖x‖ ≤ ‖x‖ when ‖f‖ ≤ 1. On the other hand,
by Proposition 3.1, there exists f ∈ V ∗ such that ‖f‖ = 1 and f(x) = ‖x‖
when x is non-zero. Thus the result is established for non-zero vectors and
is trivially true for the null vector. �

Compare the relation

‖f‖ = sup
x∈V, ‖x‖≤1

|f(x)|, (3.2)

which is a definition, with the relation (3.1), which is a theorem. In the
former, the supremum need not be attained, while in the latter the supremum
is always attained and hence is a maximum.
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4 Reflexive spaces

The relation (3.1) is the starting point for the investigation of a very nice
property of Banach spaces called reflexivity.

Let x ∈ V and define
Jx(f) = f(x)

for f ∈ V ∗. Then, by virtue of (3.1), it follows that Jx ∈ (V ∗)∗ = V ∗∗ and
that, in fact,

‖Jx‖V ∗∗ = ‖x‖V .
Thus J : V → V ∗∗ given by x 7→ Jx is a norm preserving linear transforma-
tion. Such a map is called an isometry. The map J is clearly injective and
maps V isometrically onto a subspace of V ∗∗.

Definition 4.1 A Banach space V is said to be reflexive if the canonical
imbedding J : V → V ∗∗, given above, is surjective. �

Thus, if V is reflexive, we can identify the spaces V and V ∗∗, using the
isometry, J . Since V ∗∗, being a dual space, is always complete, the notion of
reflexivity makes sense only for Banach spaces. By applying Proposition 3.3
to V ∗, it is readily seen that the supremum in (3.2) is attained for reflexive
Banach spaces. A deep result due to R. C. James is that the converse is also
true: if V is a Banach space such that the supremum is attained in (3.2) for
all f ∈ V ∗, then V is reflexive.

We saw above that the map J , being an isometry, is injective. If V is
finite dimensional, then

dim(V ) = dim(V ∗) = dim(V ∗∗)

and so J is surjective as well. Thus every finite dimensional space is reflexive.

Examples of infinite dimensional reflexive spaces are the sequence spaces

`p =

{
x = (xi) |

∞∑
i=1

|xi|p < +∞

}
with the norm

‖x‖p =

(
∞∑
i=1

|xi|p
) 1

p

,
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where 1 < p <∞. The space `1 is not reflexive. Nor is the space of bounded
sequences, `∞, with the norm

‖x‖∞ = sup
1≤i<∞

|xi|.

The closed subspaces c of convergent sequences and c0 of sequences con-
verging to zero, of `∞ are not reflexive either. The space C[0, 1] is also not
reflexive.

One of the nice consequences of the Riesz representation theorem is that
every Hilbert space is reflexive.

5 Vector Valued Integration

Let us consider the unit interval [0, 1] endowed with the Lebesgue measure.
Let V be a normed linear space over R. Let ϕ : [0, 1] → V be a continuous
mapping. We would like to give a meaning to the integral∫ 1

0

ϕ(t) dt

as a vector in V in a manner that the familier properties of integrals are
preserved.

Using our experience with the integral of a continuous real valued func-
tion, one could introduce a partition

0 = x0 < x1 < · · · < xn = 1

and form Riemann sums of the form
n∑
i=1

(xi − xi−1)ϕ(ξi)

where ξi ∈ [xi−1, xi] for 1 ≤ i ≤ n, and define the integral (if it exists) as a
suitable limit of such sums. Assume that such a limit exists and denote it by
y ∈ V . Let f ∈ V ∗. Then, by the continuity and linearity of f , it will follow
that f(y) will be the limit of the Riemann sums of the form

n∑
i=1

(xi − xi−1)f(ϕ(ξi)).
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But since f ◦ ϕ : [0, 1]→ R is continuous, the above limit of Riemann sums
is none other than ∫ 1

0

f(ϕ(t)) dt.

Thus the integral of ϕ must satisfy the relation

f

(∫ 1

0

ϕ(t) dt

)
=

∫ 1

0

f(ϕ(t)) dt (5.1)

for all f ∈ V ∗.

Notice that since V ∗ separates points of V , such a vector, if it exists, must
be unique.

We use this to define the integral of a vector valued function. Let X be
a set and let S be a σ-algebra of subsets of X, on which we have a meaure
µ. We say that (X,S, µ) is a measure space. A mapping ϕ : X → V is said
to be weakly measurable if f ◦ ϕ : X → R (or C, if the space V is a complex
normed linear space) is measurable for every f ∈ V ∗.

Definition 5.1 Let (X,S, µ) be a measure space. Let V be a real normed
linear space and let ϕ : X → R be a weakly measurable mapping. The integral
of ϕ over X, denoted ∫

X

ϕ(x) dµ(x),

is that vector y ∈ V which satisfies

f(y) =

∫
X

f(ϕ(x)) dµ(x)

for all f ∈ V ∗. �

Proposition 5.1 Let (X,S, µ) be a measure space and let V be a reflexive
space. Let ϕ : X → V be a weakly measurable maping such that∫

X

‖ϕ(x)‖ dµ(x) < +∞.

Then the integral
∫
X
ϕ(x) dµ(x) exists.
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Proof: For f ∈ V ∗, define

λ(f) =

∫
X

f(ϕ(x)) dµ(x).

Then,

|λ(f)| ≤ ‖f‖
∫
X

‖ϕ(x)‖ dµ(x),

which, by hypothesis, is finite. This shows that λ is well-defined and that it
is also a continuous linear functional on V ∗. But V is reflexive and so there
exists y ∈ V such that Jy = λ. It now follows from the definition that y is
indeed the required integral. �

Proposition 5.2 Let ϕ : [0, 1] → V be a continuous mapping into a real
Banach space V . Then the integral of ϕ over [0, 1] exists.

Proof: (Sketch) Since [0, 1] is compact, the set H which is the closure (in
V ) of the set H which is the convex hull of ϕ([0, 1]) (i.e. the smallest convex
set containing ϕ([0, 1])), is compact, by the completeness of V .

Let L be an arbitrary finite collection of continuous linear functionals on
V . Define

EL =

{
y ∈ H | f(y) =

∫ 1

0

f(ϕ(t)) dt for all f ∈ L
}
.

It is immediate to see that EL is a closed set.

Using the geometric version of the Hahn-Banach theorem, we can show
that for any such finite collection L of continuous linear functionals, EL 6= ∅.

Let I be a finite indexing set and let Li be finite collections of elements
in V ∗ for each i ∈ I. Then L = ∪i∈ILi is still finite and further, it is easy to
see that

∩i∈IELi
= EL.

It now follows from the previous step that the class of closed sets

{EL | L a finite subset of V ∗}
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has finite intersection property. Since H is compact, it now follows that

∩
L, finite subset of V ∗EL 6= ∅.

In particular, there exists y such that y ∈ E{f} for every f ∈ V ∗, i.e. y
satisfies

f(y) =

∫ 1

0

f(ϕ(t)) dt

for every f ∈ V ∗. Thus y =
∫ 1

0
ϕ(t) dt. This completes the proof. �

6 Lagrange multipliers

Let V be a normed linear space and let U ⊂ V be an open set. Let J : U → R
be a given functional.

Definition 6.1 The (Fréchet) derivative of J at a point u ∈ U , if it
exists, is denoted J ′(u), and is a continuous linear functional on V such that

|J(u+ h)− J(u)− J ′(u)(h)| = o(‖h‖),

where o(‖h‖) is a vector ε(h) such that

‖ε(h)‖
‖h‖

→ 0 as ‖h‖ → 0. �

If V = RN , then J ′(u) is just the gradient vector

∇J(u) =

(
∂J

∂x1
, · · · , ∂J

∂xN

)
.

The functional J is said to admit a relative maximum (repectively, mini-
mum) at a point u ∈ U if there exists a neighbourhood W of U such that
J(u) ≥ (J(w) (respectively, J(u) ≤ J(w)), for all w ∈ W . It is not difficult
to see that if J attains a relative maximum or minimum at u ∈ U , and if J
is differentiable at u, then J ′(u) = 0.

Let us now consider the problem of finding extrema under constraints.
Let J : V → R be functional and let {ϕi}mi=1 be continuously differentiable
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functionals defined on V . We look for a relative extremum u of J subject to
the constraints ϕi(u) = 0, 1 ≤ i ≤ m. Let

K = {v ∈ V | ϕi(v) = 0, 1 ≤ i ≤ m}.

The set K is not open in general and so we cannot apply the previous result
and so we cannot deduce that J ′(u) = 0.

Let us assume that J attains a relative extremum at a point u ∈ K and
that the gradient vectors {ϕ′(u)}mi=1 are all linearly independent. Then, by
an application of the implicit function theorem, one can show that if v ∈ V
such that ϕ′i(u)(v) = 0 for all 1 ≤ i ≤ m, then J ′(u)(v) = 0 as well (cf.
Kesavan [3]).

Proposition 6.1 Let V be a vector space and let {fi}ki=0 be linear functionals
on V such that

∩ki=1Ker(fi) ⊂ Ker(f0).

Then, there exist scalars {λi}ki=1 such that

f0 =
k∑
i=1

λifi.

Proof: Consider the linear map A : V → Rk+1 (we assume here that the
base field is R) defined by

A(x) = (f0(x), f1(x), · · · , fk(x)).

The range is a subspace of Rk+1 and , by hypothesis, (1, 0, · · · , 0) does not be-
long to this range. Hence (cf. Proposition 3.2) there exist scalars βi, 0 ≤ i ≤ k
such that β1 6= 0 and

∑k
i=0 βifi(x) = 0 for all x ∈ V . The result now follows

with λi = − βi
β1
. �

Using the above proposition, we deduce that there exist scalars λi, 1 ≤
i ≤ m such that

J ′(u) =
m∑
i=1

λiϕ
′(u).

Let V = Rn and let J and ϕi, 1 ≤ i ≤ m be continuously differentiable
functions. Assume that we have a relative extremum u of J such that ϕi(u) =
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0 for 1 ≤ i ≤ m. Then, if {∇ϕi(u)}mi=1 are linearly independent, then we
have m scalars λi, 1 ≤ i ≤ m such that J ′(u) =

∑m
i=1 λi∇ϕi(u) = 0. Let

u = (u1, · · · , un). then we solve for the n + m unknowns {ui | 1 ≤ i ≤
n} ∪ {λi | 1 ≤ i ≤ m} by solving the following set of n+m equations:

∂J
∂x1
− λ1 ∂ϕ1

∂x1
− · · · − λm∂ϕm

∂x1
= 0,

· · · · · · · · · = 0,
∂J
∂xn
− λ1 ∂ϕ1

∂xn
− · · · − λm∂ϕm

∂xn
= 0,

ϕ1(u) = 0,
· · · = 0,

ϕm(u) = 0,

which is exactly the method of Lagrange multipliers in the calculus of several
variables.

BOX 1

For those familiar with the theory of distributions, Proposition 6.1, is applied
there as well. Let α = (α1, · · · , αN) be a multi-index, i.e. a N -tuple of non-
negative integers. We set |α| = α1 + ·+ αN and define

Dα =
∂|α|

∂xα1
1 · · · ∂x

αN
N

.

The Dirac distribution δ and all its derivatives have support {0}. Proposition
6.1 is used to show the converse: if T is a disribution of RN whose support
is {0}, then, there exists a positive integer k and constants cα, |α| ≤ k, such
that

T =
∑
|α|≤k

cαD
αδ.

(see, Kesavan [2]).

Another application of the Hahn-Banach theorem in the theory of distri-
butions is the Malgrange-Ehrenpreis theorem. Let P denote a polynomial in
N variables. If α is a multi-index, then replace the monomial xα1

1 · · ·x
αN
N by

Dα to get the corresponding differential operator P (D). The theorem states
that there is a distribution T on RN such that P (D)(T ) = δ, where δ is the
Dirac distribution (cf. Rudin [5], for a proof). Such a distribution is called a
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fundamental solution of the partial differential operator P (D). For example
1
2π

log |x| is a fundamental solution of the Laplace operator when N = 2 and
− 1

4π|x| is a fundamental solution of the same operator in R3. Fundamen-
tal solutions have several uses; they can be used to solve partial differential
equations using the technique of convolution and they also give important in-
formation about the smoothness of solutions of partial differential equations
when the data is smooth.

7 Convex programming

In the previous section, we considered the relative extrema of functionals
in the presence of constarits of th form ϕi(x) = 0, 1 ≤ i ≤ m. We now
consider the relative extrema of functionals under inequality constraints, i.e.
constraints of the form ϕ(x) ≤ 0, 1 ≤ i ≤ m. The key step to this study
is the analogue of Proposition 6.1, which is called the Farkas-Minkowski
lemma.

Definition 7.1 A cone in a real vector space V is a set C such that:
(i) 0 ∈ C;
(ii) if x ∈ C and λ ≥ 0, then λx ∈ C. �

Lemma 7.1 Let vi, 1 ≤ i ≤ n be elements in a normed linear space V .
Define

C =

{
n∑
i=1

λivi | λi ≥ 0, 1 ≤ i ≤ n

}
.

Then C is a closed convex cone. �

It is easy to see that C is a convex cone. It is also not difficult to see that
it is closed when the vectors are all linearly independent. It is possible to
reduce the general case to the linearly independent case to get a complete
proof of this lemma.

Proposition 7.1 (Farkas-Minkowski Lemma) Let V be a real reflexive
Banach space and let {f0, f1, · · · , fn} be elements of V ∗ such that if for some
x ∈ V we have fi(x) ≥ 0 for all 1 ≤ i ≤ n, then f0(x) ≥ 0 as well. Then,
there exists scalars λi ≥ 0, 1 ≤ i ≤ n such that

f0 =
n∑
i=1

λifi.
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Proof: Let

C =

{
n∑
i=1

λifi | λi ≥ 0, 1 ≤ i ≤ n

}
which is a closed convex cone in V ∗ by the preceding lemma. Assume that
f0 6∈ C. Then, by the Hahn-Banach Theorem (cf. Theorem 2.5) there exist
ϕ ∈ V ∗∗ and α ∈ R such that

ϕ(f0) < α < ϕ(f)

for all f ∈ C. Since 0 ∈ C, it follows that α < 0. Thus ϕ(f0) < 0 as well.
Now, since V is reflexive, there exists x ∈ V such that ϕ = Jx and so

f0(x) < 0. On the other hand, since C is a cone, for all λ > 0, and for
all f ∈ C, we have λf ∈ C and so ϕ(λf) > α or, ϕ(f) > α/λ whence we
deduce, on letting λ tend to infinity, that ϕ(f) ≥ 0, i.e. f(x) ≥ 0 for all
f ∈ C. In particular fi(x) ≥ 0 for all 1 ≤ i ≤ n while f0(x) < 0, which is a
contradiction. Thus f0 ∈ C and the proof is complete. �

Let V be a real normed linear space and let J : V → R be a given
functional. Let K ⊂ V be a closed and convex subset. Then, if J attains
a minimum over K at u ∈ K and if J is differentiable at u, a necessary
condition is that

J ′(u)(v − u) ≥ 0

for all v ∈ K (Exercise!). We would like to generalize this to sets K which
are not necessarily convex.

Let ϕi, 1 ≤ i ≤ m be a finite set of functionals on V . Set

U = {v ∈ V | ϕi(u) ≤ 0, 1 ≤ i ≤ m}. (7.1)

Of particular interest is the case when the functionals ϕi are affine linear,
i.e. there exist fi ∈ V ∗ and di ∈ R for 1 ≤ i ≤ m such that

ϕi(u) = fi(u) + di (7.2)

for 1 ≤ i ≤ m. In this case, we can prove the following result.

Proposition 7.2 Let U be as given by (7.1) and let the constraints ϕi be
affine linear, given by (7.2). Then, for any u ∈ U , set

C(u) = {w ∈ V | fi(w) ≤ 0, i ∈ I(u)} (7.3)
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where
I(u) = {i | 1 ≤ i ≤ m, ϕi(u) = 0}.

If J attains a relative extremum at u ∈ U , and if J is differentiable at u,
then

J ′(u)(w) ≥ 0, for all w ∈ C(u). �

Theorem 7.1 (Kuhn-Tucker Conditions) Let V be a real, reflexive Ba-
nach space. Let ϕi, 1 ≤ i ≤ m be as in (7.2) and let U be as in (7.1). Let
J : V → R be a functional which attains a relative minimum at u ∈ U .
Assume that J is differentiable at u. Then, there exist constants λi(u) such
that

J ′(u) +
∑m

i=1 λi(u)ϕ′i(u) = 0∑m
i=1 λi(u)ϕi(u) = 0

λi(u) ≥ 0, 1 ≤ i ≤ m.

 (7.4)

Proof: By Proposition 7.2, we have that for all w such that ϕ′i(u)w ≤ 0, i ∈
I(u), we have J ′(u)w ≥ 0. Thus, by the Farkas-Minkowski lemma, there
exist λi(u) ≥ 0 for i ∈ I(u) such that

J ′(u) = −
∑
i∈I(u)

λi(u)ϕ′i(u).

Setting λi(u) = 0 for all i 6∈ I(u), we get (7.4). This completes the proof. �

The above theorem can be generalized to cases when the ϕi are not affine.
In this situation, in addition to differentiability at u, we need to assume an-
other technical condition of ‘admissibility’ on the constraints at u. In par-
ticular, when the constraints ϕi, 1 ≤ i ≤ m are all convex, the admissibility
condition reads as follows:

• either, all the ϕi are affine and the set U given by (7.1) is non-empty;

• or, there exists an element v∗ ∈ V such that ϕi(v
∗) ≤ 0 for all 1 ≤ i ≤ m

and ϕi(v
∗) < 0 whenever ϕi is not affine linear.

If J is differentiable at u and the constraints are differentiable and admis-
sible (at u), then (7.4) is a necessary condition for u to be a relative minimum
of J at u. In addition, if J and the constraints ϕi are all convex, then (7.4)
is both necessary and sufficient. Interested readers can find further details
in the book by Ciarlet [1].
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