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9. Hyperelliptic Cryptosystems

We will now work with a specific collection of examples of algebraic schemes that
can be used for cryptosystems—hyperelliptic curves. In this case we can explicitly
give a system of representatives for the elements of the K-group, a mechanism for
“reducing” any element to one of these representing elements and also a bound for
the size of the group. We will see in the next section how such information about
a group can be used to make computations with the group efficient.

9.1. Hyperelliptic curves. Loosely speaking, hyperelliptic curves represent the
solutions of the equations of the form

y2 + a(x)y + b(x) = 0

where a and b are polynomials in x. To put this in the language of schemes de-
veloped earlier, we first restrict our attention to schemes over Spec(F) where F is
a finite field called the ground field. Next we consider the d − tuple Veronese em-
bedding of P

1 in P
d; also known as the “rational normal curve of degree d”; this is

given as the locus of (1 : x : x2 : · · · : xd) as (1 : x) varies over P
1. Alternatively, it

is described by the system of equations XpXq = XrXs for all p, q, r, s such that
p + q = r + s. Let us consider P

d+1 with (X0 : · · · : Xd : Y ) as its co-ordinates so
that P

d is obtained by projecting from the point (vertex) v = (0 : · · · : 0 : 1). Let
Sd denote the “cone” over the rational normal curve of degree d; it is the subvariety
of P

d defined by the same set of equations as above (in other words the variable Y
is “free”). Now suppose that a(x) =

∑
i aix

i is a polynomial of degree at most d
and b(x) =

∑
i bix

i is a polynomial of degree at most 2d. We consider the linear
forms

A(X) =

d∑

i=0

aiXi

B(X) =

d∑

i=0

biXi

C(X) =

d∑

i=1

bd+iXi

and the quadratic equation Y 2+A(X)Y +B(X)X0+C(X)Xd = 0. The addition of
this equation to the equations for S defines a subvariety T of S. It is clear that the
vertex v does not lie on T so that projection gives a morphism on T which lands in
the rational normal curve of degree d. Thus, we have a morphism T → P

1. There
is an involution on P

d+1 which fixes the X’s and sends Y to A(X)−Y . Clearly this
involution ι sends T to itself and pairs of points that are involutes of each other
are sent to the same point in P

1. The variety T is called a hyperelliptic curve, the
involution is called the hyperelliptic involution and the morphism T → P

1 is called
the canonical morphism.

Now it is clear that a solution (x, y) of the equation y2 + a(X)y + b(x) = 0
gives rise to the solution (1 : x : · · · : xd : y) of the above system. Conversely, if
we have a solution (X0 : X1 : · · · : Xd : Y ) of the system of equations with X0

a unit, then we can put (x, y) = (X1/X0, Y/X0) to obtain a solution of the two
variable equation. Similarly, if (X0 : · · · : Xd : Y ) is a solution of the system of
equations and Xd is a unit then consider the pair (u, v) = (Xd−1/Xd, Y/Xd); this
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pair satisfies a two variable equation v2+a′(u)v+b′(u) = 0, where a′(u) = uda(1/u)
and b′(u) = u2db(1/u). One sees from the above system that either X0 or Xd must
be a unit so we have covered all cases. The Jacobian criterion for regularity can be
used to show that the curve defined by y2+a(x)y+b(x) = 0 is regular when either,

(1) the discriminant a(x)2 − 4b(x) has distinct roots, or
(2) the field F has characteristic 2, a(x) has distinct roots and for each point

(x0, y0) where x0 is a root of a(x), the polynomial b(x) − b(x0) − y0a(x)
vanishes with multiplicity one at 0.

To apply this to the equation v2 + a′(u)v + b′(u) = 0, we note that

a′(u)2 − 4b′(u) = u2d(a(1/u)2 − 4b(1/u))

Thus, if a(x)2 − 4b(x) has distinct roots, then the only multiple root of a′(u)2 −
4(b′(u) can be at u = 0; moreover, this happens only if a(x) has degree less than
d− 1 and b(x) has degree less than 2d− 1. From now one we will assume the T is
regular or non-singular; in fact we will assume that b(x) has degree equal to 2d− 1.
The point (0 : · · · : 0 : 1 : 0) is a point on the curve T is called the “point at infinity”
and denoted∞. The number g = d−1 is called the genus of the hyperelliptic curve.
The points on T where a(x)2 − 4b(x) vanishes and the point at infinity are called
theWeierstrass points of the hyperelliptic curve; these are precisely the fixed points
of the Weierstrass involution.

9.2. Closed points. A proper closed reduced irreducible subscheme of T (or P
1)

is called a closed point. Let P be a closed point of T and Q be its image in P
1.

If U , V denote the coordinates on P
1 then Q is defined as the vanishing locus of

an irreducible homogeneous polynomial F (U, V ). Thus either F = V and Q is the
point at infinity on P

1 or V does not divide F . In the latter case Q is contained
in A

1 which is the open subset of P
1 where V is a unit (i. e. the complement of

the point at infinity). The coordinate on A
1 is given by x = U/V and Q defined

by the irreducible polynomial f(x) = F (U, V )/V deg(F ). Now, if Q is the point at
infinity then the description in the previous paragraph shows that P must be the
point at infinity on T . In the second case P is an irreducible closed subscheme of
the subscheme of A

2 defined by the equations

y2 + a(x)y + b(x) = 0

f(x) = 0

In other words, let E = F[x]/(f(x)) be the finite extension of the ground field F

and let α and β be the images of a(x) and b(x) in E. The closed point P is given by
solving the equation y2 +αy + β over E. Clearly, there are three cases to consider.
The case when this equation has multiple roots (when α2−4β = 0) is clear the case
which corresponds to Weierstrass points. The case when this equation is irreducible
over E is the case case when P is the full inverse image of Q under the morphism
T → P

1. Finally, when the quadratic equation is solvable in E, there is an element
γ in E that corresponds to the point P . Now γ is the image in E of a polynomial
g(x) in F[x], we can further choose g so that its degree is less than the degree of f .
To summarise, a closed point of T takes one of the following forms:

(1) The point at infinity on T .
(2) An irreducible factor f(x) of the discriminant a(x)−4b(x) is given. In this

case there is a unique polynomial g(x) of degree less than deg(f) so that



54 KAPIL HARI PARANJAPE

y = g(x) represents the (unique) solution of the equation y2 + a(x)y + b(x)
in the field E = F[x]/(f(x)).

(3) We have an irreducible polynomial f that is co-prime to the discriminant
and the quadratic equation y2 + a(x)y + b(x) is irreducible modulo f(x).

(4) We have an irreducible polynomial f(x) that is co-prime to the discrimi-
nant. Moreover, we are given a polynomial g(x) of degree less than deg(f)
so that y = g(x) represents one of the two solutions of the equation
y2 + a(x)y + b(x) in the field E = F[x]/(f(x)).

We note that the first two cases above correspond to Weierstrass points on T .
One should not be misled by the term “closed point”—when considering solutions

over general finite rings (in our case rings that are finite dimensional vector spaces
over F suffice), we can find that each closed point has many “elements”. In fact, let
F(P ) denote the field E = F[x]/(f(x)) in cases (2) and (4). In case (3) let F(P ) be
the quadratic extension of E where the irreducible quadratic polynomial y2+αy+β
has its roots. We note that F(P ) is a finite extension of the finite field F and hence
is a Galois extension; thus it contains all the roots of any polynomial which has one
of root in it. From this one sees that P (F(P )) is a finite set of cardinality equal to
the degree [F(P ) : F]; note that this is deg(f) in cases (2) and (4) and is 2 deg(f)
in case (3). This number F(P ) : P ] is called the degree of the closed point P and
denoted deg(P ).

9.3. Divisors. Let Z be a proper closed subscheme of T and W be its image in P
1.

As before W is defined as the vanishing locus of a homogeneous polynomial F (U, V ).

Let F = V kF k1

1 · · ·Fnr

r be a factorisation of F with Fi irreducible and distinct from
each other and V . Clearly W is the disjoint union of closed subschemes Wi each
defined by the vanishing of Fi(U, V )ki and the scheme W0 defined by V k = 0. As
before, we write fi(x) = Fi(U, V )/V deg(Fi), where x = U/V ; let Qi denote the
closed point in A

1 defined by fi and Q0 be the point in P
1 defined by V = 0. We

can decompose Z into the components Zi that lie over the component Wi of W . We
can then classify Zi according to the classification of the polynomials fi as above. In
cases (1), (2) and (3) above there is exactly one closed point that lies over Qi, thus
the schemes Zi are “thickenings” of the corresponding closed points Pi. In case (4)
there are two closed points corresponding to the distinct roots; we denote these by
Pi,1 and Pi,2. Let Pi,1 correspond to the solution y = g(x) or y2 + a(x)y+ b(x) = 0
in F[x]/(fi(x)). By Hensel’s lemma we can find gki

(x) in F[x]/(fi(x)
ki) which is a

“lift” of the solution g(x). Thus we have the closed subscheme Zi,1 of Zi defined by
the solution y = gki

(x). Similarly, we have Zi,2 and it is clear that Zi is the union
of these two schemes. Thus each proper closed subscheme of T is the disjoint union
of “thickened” closed points.

For any such closed subscheme Z of T we have a vector space scheme given by
(Ga)Z extended by zero on the rest of T . We denote this vector space scheme by
(P ) when Z is the subscheme associated to the a closed point P . The vector space
scheme associated with the “thickened” closed points is equivalent, in the K-group,
to n(P ) for some integer n. This can be shown by a “composition series argument”.
A similar Jordan–Hölder composition series can be used to show that the K-group of
T is generated by (Ga)T and the elements (P ). Moreover, if we consider an element
D of the form

∑
i ni(Pi) of the K-group then the number deg(D) =

∑
ni deg(Pi)

can be shown to be well-defined (independent of the representation of D). Thus
the important group becomes the group of “divisors of degree 0” of the subgroup of
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the K-group consisting of elements of the form
∑

i ni(Pi) where
∑

i ni deg(Pi) = 0.

This group is denoted Pic0(T ). An important theorem of Weil states that there
is a group scheme J (called the Jacobian variety of T ) such that Pic0(T ) can be
naturally identified with J(F). There is also a natural analogy of this with the
divisor class group for quadratic number fields that we will consider in the next
subsection.

To compute the group Pic0(T ) of divisors of degree 0, it enough to work modulo
(∞) which is of degree 1, since any divisor can be converted to one of degree 0 by
subtracting a suitable multiple of (∞). Thus, we see that this group is generated
by the elements [P ] = (P )− deg(P )(∞). For a divisor D of degree d we introduce
the notation [D] = D − d(∞) to denote the corresponding element in Pic0(T ).

9.4. Computing with the divisor class group. Let Q be any closed point in
P

1 that is different from the point ∞ at infinity. As we saw above Q is given
as a closed subscheme of A

1 = P
1 − ∞ as the vanishing locus of an irreducible

polynomial f(x). If k = deg(f) then consider the f -fold Veronese embedding of
P

1 in P
k. We see that Q is precisely the intersection of the image of P

1 with the
hyperplane V (a0X0 + · · · + akXk) (if f(x) = a0 + · · · + akX

k). Moreover, V (X0)
intersects the image of P

1 in a k-tuple thickening of ∞. From earlier remarks on
the K-group we see that (Q) = k(∞) in K(P1).

Now the morphism T → P
1 is flat and so we get a group homomorphism K(P1)→

K(T ). In particular, in the various cases enumerated above, for closed points P in
T that lie over closed points Q in P

1 we have:

(1) The image of the element (∞) under this homomorphism is 2(∞).
(2) If Q is the closed point corresponding to an irreducible factor of a(x)2 −

4b(x), then the image of (Q) is 2(P ).
(3) If f(x) is an irreducible polynomial so that y2 + a(x)y + b(x) is irreducible

modulo f(x), then the image of (Q) is (P ).
(4) If f(x) is an irreducible polynomial so that y2 + a(x)y + b(x) has distinct

roots g(x) and h(x) modulo f(x), then there are two closed points P and
P ′ that lie over Q and the image of (Q) is (P ) + (P ′).

From the relation (Q) = deg(Q)(∞) we obtain relations in each case as follows. In
case (2) we see that deg(P ) = deg(Q) so that (Q)−deg(Q)(∞) has the image 2[P ] =
2(P )−2 deg(P )(∞); thus [P ] is a two torsion point in this case. In case (3), we have
deg(P ) = 2 deg(Q) and so that (Q)−deg(Q)(∞) has image [P ] = (P )−deg(P )(∞);
thus [P ] is 0 in this case. In case (4) deg(P ) = deg(P ′) = deg(Q) and the image of
(Q)− deg(Q)(∞) is [P ] + [P ′] which gives us the identity [P ] + [P ′] = 0.

Thus, elements of Pic0(T ) can be written in the form
∑

i ni[Pi] +
∑

j [Pj ] where

the former [Pi] are all of type (4) and the latter [Pj ] are of type (2). As we saw
above, Hensel’s lemma allows us to lift the solution y = g(x) of the equation
y2 + a(x)y+ b(x) modulo f(x) in case (4) to a solution y = gk(x) modulo f(x)k for
any k. Combining this with the Chinese remainder theorem, we see that divisors
are characterised as solutions y = g(x) of y2 + a(x)y + b(x) modulo f(x), where
f(x) is not necessarily irreducible. Conversely, given such a solution, let Z =
V (y − g(x), f(x)) and we have the divisor (Z)− deg(f)(∞) in Pic0(T ).

To summarise, each divisor class in Pic0(T ) is represented by a pair of polynomi-
als (f(x), g(x)), where g(x) has degree less than that of f(x) and g(x)2+a(x)g(x)+
b(x) is divisible by f(x); as we shall see below this representation is not unique. We
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can further assume that any irreducible factor of f(x) that divides a2(x) − 4b(x)
divides f(x) at most once. Moreover, it is clear that the inverse of this class in
Pic0(T ) is represented by (f(x), g1(x)), where g1(x) is the reduction modulo f(x)
of a(x)− g(x).

If (f1(x), g1(x)) and (f2(x), g2(x)) are two such pairs, then we can form their
sum in Pic0(T ) as follows.

(1) Assume that f1(x) and f2(x) are co-prime. We find h1(x) and h2(x) so that
h1f1+h2f2 = 1. Let g(x) be the reduction of h1f1g2+h2f2g1 modulo f1f2.
We see that g(x) reduces to g1(x) modulo f1 and to g2(x) modulo f2. Hence,
by the Chinese Remainder Theorem it follows that g(x)2 + a(x)g(x) + b(x)
is divisible by f(x) = f1(x)f2(x). Thus the sum is (f(x), g(x)).

(2) Now suppose that h(x) is a common factor of f1(x) and f2(x). We further
write h(x) = h1(x)h2(x) where h1(x) is the common factor of h(x) with
a2(x)− 4b(x). Since the corresponding elements [P ] (in case (2) as above)
are of order 2 it follows that this factor disappears when the sum is taken
in Pic0(T ). In other words, let f ′1(x) and f ′2(x) be the quotients of f1(x)
and f2(x) by h1(x) respectively, and let g′1(x) and g′2(x) be the reductions
of g1(x) by f1(x) and g2(x) by f2(x) respectively. The sum of the pairs
(f ′1(x), g

′
1(x)) and (f ′2(x), g

′
2(x)) is the same as the sum we want to compute.

(3) Assume that the common factor h(x) of f1(x) and f2(x) is co-prime to
a2(x) − 4b(x). Let h1 be the highest common factor of h with g1 + g2 − a
and let h1 = h/h2. Now, both g1 and g2 a solutions of y2 + a(x)y +
b(x) = 0 modulo h1(x) and their sum is a(x). It follows that these are
complementary solutions as in case (4) above. Thus these cancel out when
the sum is taken in Pic0(T ). As in the previous case, we can replace the
pairs (f1, g1) and (f2, g2) by another pair with the same sum, with the
property that the f1, f2 and g1 + g2 − a have no common factor.

(4) Assume that the common factor h(x) of f1(x) and f2(x) is co-prime to
a2(x)−4b(x) and to g1(x)+g2(x)−a(x). Now, both g1 and g2 are solutions
of y2 + a(x)y + b(x) = 0 modulo h(x) and they are not complementary
modulo any factor of h(x). By the uniqueness part of Hensel’s lemma
it follows that g1(x) and g2(x) is have the same reduction m(x) modulo
h(x). Another application of Hensel’s lemma allows us to lift m(x) to
a solution mk(x) of the above equation modulo h(x)k, for every power
k. Now, we can write f1(x) = n1(x)f

′
1(x) where f ′1(x) has no factor in

common with h(x), moreover n1(x) is the greatest common factor of f1(x)
with h(x)k1 for a suitable power k1; similarly f2(x) = n2(x)f

′
2(x). Let

k be such that h(x)k is divisible by n1(x)n2(x). By using the Chinese
Remainder theorem as before, we can find g′(x) which lifts the solutions
mk(x) modulo h(x)k, g1(x) modulo f ′1(x) and g2(x) modulo f ′2(x) to a
solution modulo h(x)kf ′1(x)f

′
2(x). Reducing this solution modulo f1f2 =

n1n2f
′
1f
′
2, we obtain the required pair (f(x), g(x)).

Finally we need to “reduce” divisors to a bounded collection. For this we use
our original description of the hyperelliptic curve T as a closed subscheme of the
cone Sd in P

d+1. We have noted earlier that if L is any P
d sitting linearly in P

d+1,
then we have an exact sequence

0→ (V1 × L)Pd+1 → V
1 × P

d+1 → H → 0
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Now the restriction of (V1 ×L)Pd+1 to T is (V1 ×D)T where D is the divisor on T
given by the intersection of L and T . As remarked earlier, this shows that the class
in K0(T ) of (L ∩ T ) is independent of L. One such L is V (X0) which intersects T
in 2d(∞). Thus, we note that if (L∩T ) =

∑
i ni(Pi) then

∑
i ni[Pi] = 0 in Pic0(T ).

Now, any collection of d + 1 points in P
d+1 lie on an L which contains them.

More generally, on can show the same for a divisor of degree d + 1 on T . Now
any L intersects T in a divisor of degree 2d. In particular, given any divisor D
of degree d, we can find an L that contains D + (∞), so that L intersects T in
D+(∞)+E where E has degree d−1. Thus, we see that [D]+ [E] = 0 in Pic0(T ).
The inverse of [D] for a divisor D of degree d is thus represented by [E] where E
has degree d− 1. This is the basic geometric idea behind the reduction of divisors.
The algebraic steps for this reduction are described below.

As we saw above, elements of Pic0(T ) are represented by pairs (f(x), g(x)), where
g(x) has degree less than the degree of f(x) and h(x) = g(x)2 + a(x)g(x) + b(x) is
divisible by f(x). Moreover, we can also assume that f(x) is divisible at most once
by any irreducible factor that it has in common with a(x)2−4b(x). Now if f(x) has
degree d+ k, then h(x) has degree at most the maximum of {2(d+ k− 1), (d− 1)+
(d + k − 1), 2d − 1}. Thus writing h(x) = f(x)f ′(x) we see that f ′(x) has degree
at most the maximum of {d + k − 2, d − 1}. Moreover, if g′(x) is the reduction of
g(x) modulo f ′(x), then (f ′(x), g′(x)) is another pair representing an element of
Pic0(T ). Now, let g(x) =

∑
i aix

i have degree at most d and put G(X) =
∑

i aiXi.
Then (f(x)f ′(x), g(x)) represents the divisor L∩ T where L = V (Y −G(X)), thus
we see that (f ′(x), g′(x)) represents the inverse of the element of Pic0(T ) that is
represented by (f(x), g(x)) in this case. This argument can be generalised to the
case g has degree more than d as well (by using the k-tuple Veronese embedding of
P

d+1 and using linear subspaces from there) to show the same result.
To summarise, we have two ways of representing the inverse of an element of

Pic0(T ) that is represented by the pair (f(x), g(x)). One method is to let g1(x)
be the reduction modulo f(x) of a(x) − g(x) and take the pair (f(x), g1(x)). The
other method is to take f ′(x) to be the quotient of g(x)2 + a(x)g(x)+ b(x) by f(x)
and g′(x) to be the reduction of g(x) modulo f(x). Combining these let f2(x) be
the quotient by f(x) of

(a(x)− g(x))2 + a(x)(a(x)− g(x)) + b(x) = g(x)2 − a(x)g(x) + b(x)

and g2(x) be the reduction modulo f2(x) of a(x) − b(x). We see that the pair
(f(x), g(x)) and the pair (f2(X), g2(x)) represent the same element in Pic0(T ).
Moreover, if f(x) has degree d + k for some k ≥ 0, then f2(x) has strictly smaller
degree. Thus we have a method to reduce all pairs representing elements of Pic0(T )
to pairs (f(x), g(x)) where f(x) has degree at most d− 1.

9.5. Frobenius Endomorphism. Since all our varieties are defined over a finite
field F, there is a special endomorphism to consider. Let q be the number of
elements of the field, then for any element of the field a = aq. Thus for any
polynomial f(t1, . . . , tr) with coefficients in F we have

f(t1, . . . , tr)
q = f(tq1, . . . , t

q
r)

Now consider the endomorphism of P
k given by (X0 : · · · : Xk) 7→ (Xq

0 : · · · : Xq
k).

If X = V (F1, . . . , Fp;G1, . . . , Gq) is a subscheme of P
k and the polynomials Fi



58 KAPIL HARI PARANJAPE

and Gj have coefficients in F, then this endomorphisms sends X to itself. This
endomorphism of X is called the Frobenius Endomorphism F : X → X.

If A is any finite dimensional F-algebra, then a 7→ aq gives a ring homomorphism
from A to itself. Moreover if A is local, then the only elements of A that are fixed
under this homomorphism are elements of F. From this one can show that the
intersection of the diagonal ∆X with the graph ΓF of the Frobenius in X × X is
precisely X(F); the points of X over F.

Now for any regular scheme X over F, the Frobenius F is a flat morphism
and thus gives an endomorphism of K0(X). The latter group thus acquires some
“structure” in addition to being an abelian group. In the case when X is a curve
(or more specifically a hyperelliptic curve) this has additional consequences. As
we remarked above K0(X) is decomposed as the free group on Ga plus the free
group on [∞] (which can be any F point of X) and the group Pic0(X). Moreover,
there is a group scheme J so that Pic0(X) = J(F). Thus, one way to determine
the order of the group Pic0(X) is to determine the fixed points for the action
of Frobenius on this group scheme. Now, let ` be a prime that is invertible the
field F. On can show that the points of order ` in J(E) for a large enough field
extension E of F form a vector space of rank 2g over Z/`Z (here g is the genus
of the curve X). Moreover, there is a polynomial P (T ) of degree 2g with integer
coefficients that is satisfied by the automorphism of this vector space that is given
by the Frobenius endomorphism; the important point is that this polynomial is
independent of `. Another important fact is that this polynomial has roots that are
complex numbers of absolute value q1/2. Finally, given P (T ) one can determine
the number of elements in J(E) for any finite extension of F. These results were
proved by Weil and were generalised to other varieties in the form of the “Weil
conjectures” which were proved by Grothendieck, Deligne and others.

This approach was used by Schoof to calculate the order of Pic0(T ) in the case
T is an elliptic curve (or a hyperelliptic curve of genus 1). In this case P (T ) is a
quadratic polynomial of the form T 2+aT+q; moreover, J = T in this case. One can
write polynomials f`(x) that are satisfied by the x co-ordinates of points of order
l. Thus we can use the action of the Frobenius on this polynomial to determine a
modulo ` for a number of primes `. The additional inequality |a| ≤ q1/2, can then
we used to determine a. One could attempt to generalise this to other hyperelliptic
curves. One must write down the equations that define the `-torsion in the Jacobian
J . From the action of the Frobenius on this we can write down the coefficients of
P (T ) modulo `. The inequalities resulting from the knowledge of the absolute value
of the complex roots can then be used to bound the number of ` for which this needs
to be done in order to determine the coefficients uniquely.


