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4. Primes and Composites

We have seen that it is necessary to find large primes quickly in order to generate
cryptosystems. The cryptanalyst’s job is to factor numbers into prime factors (or
at least find many prime factors of a number). We examine these problems in this
section.

4.1. Eratosthenes’ sieve. The most traditional way of finding prime numbers is
the sieve of Eratosthenes. Suppose we are given a list l of all primes less than the
integer n. Then n is prime if it is not a multiple of any of these. Thus, if we
have also a list m, so that mi is the least multiple of the prime li that is not less
than n, we can compare n with elements of this list to decide if it is a prime. The
incremental step can then be carried out as follows. We run through the list mi

look for n. Whenever we find n we note that n is composite and replace mi by
mi + li. If we come to the end of the list without find such an i, then n is a prime
so we append it to the end of l; we also append 2 ∗ n to the end of m. In this way
we can iteratively generate the list of all primes!

Clearly as the list grows larger this is taking up more and more space and time.
Moreover, it gives us no way of checking if a given number is prime except by
running through all primes before it.

4.2. Trial division. If N = a · b is a factoring of a number N , then at least one
of the numbers a, b is such that its square is not more than N . Thus to check,
whether N is a prime, it is enough to test whether it is a multiple of prime number
p so that p2 is not more than N . This leads to the first test that does not require
a list of all primes less than N . Given the increasing sequence l of all primes less
than some number x so that x2 > N , we check for the primality of N as follows.
We run through the sequence l, dividing N by the primes li to obtain N = qili+ri.
If ri is zero then N is not a prime and we stop. If qi < li, then l2i > N so have
checked enough prime factors to show that N is a prime and we stop.

4.3. Combinations of the methods. When we compare the trial division method
with Eratosthenes’ sieve, we see that we are only checking for divisors upto

√
N ,

but we are performing divisions rather than the (much simpler) additions. Thus
there should be a way of improving the Eratosthenes’ method.

First of all, when we find a new prime m we should append the square m2 to
the list of multiples rather than 2 ∗m; all smaller multiples of m are also multiples
of smaller primes! This is not enough to speed up the sieve computation since we
will still be comparing our trial prime m with all the elements in the multiple list
instead of only the “relevant” ones; the list of multiples grows as fast as the list of
primes, whereas the multiples we need to check against are only multiples of primes
less than the square root. Thus we keep a pointer s into the list m that keeps track
of where the list of squares in this list start. We do not check for multiples beyond
this point. This extension of the sieve using the idea from trial division is a good
way to generate lists of primes.

Trial division is then only a method to check for primality for a small set of
numbers and not a method for building lists. Its one big limitation is its dependence
on a list of all primes upto

√
N . We do not want to keep extending our list of primes

(otherwise we may as well be generating using the sieve as above). So we can ask
if we can improve trial division using ideas from the sieve.
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It is possible to append a “sieve” at the end of the given list of primes l as
follows. Let M the product of a the first few prime numbers (say 6 or 30 or 210).
Let S be the (naturally ordered) collection of representatives between 0 and M − 1
of the units in Z/MZ.

After we exhaust the given list l without obtaining qi < li we can “extend” the
trial division process by trying divisors of the form s + nM where s runs over the
residue classes S and n over non-negative integers. While these divisors are not
primes, they include all primes and we are at least eliminating some “obvious”
repetitions.

Algorithmically, we can apply the above procedure as follows. Let s1 < s2 <
· · · < sr be the list of elements of S. We place the residue class modulo M of
the largest element p of l (which should be larger than the factors of M !) in this
list—say as st. After we have exhausted the list l we try lk+1 = lk + (st+1 − st).
Then we can try lk+i+1 = lk+i + (si+1 − si) in succession, with the understanding
that the successor sr+1 or sr is M + s1; and more generally sar+b = aM + sb.

This allows us to check the primality of numbers larger than the square of p
as well. However, the job of running through a long list of divisors makes trial
division unsuitable for finding large prime factors. One can show that (for many
numbers) trial division quickly finds small prime factors and then spends a lot of
time running through the lists trying to find the larger ones.

4.4. Compositeness Tests. We now look at tests that will try to show that a
number is composite. In other words, the test either shows that the number is
composite or exits (apparently) without giving any information.

If p is a prime number, then all numbers between 1 and p−1 give units in Z/pZ.
In fact, Z/pZ is a field and we have the elementary result

Lemma 6. The group of units in a finite field is a cyclic group.

Proof. By Legendre’s theorem we see that the order of any element divides the order
of the group. On the other hand, if x has order dividing d then it is a solution of
T d−1; the latter has at most d solutions since we are in a field. Thus, the exponent
of the group of units (i. e. the least common multiple of the orders) must be equal
to the order of the group. Now, given elements x and y of orders m and n in an
abelian group it is easy to construct an element of the form xayb which has order
equal to the least common multiple of m and n. Thus we have a unit of order equal
to the order of the group of units; in words the group is cyclic. ¤

In particular, by Legendre’s theorem we see that ap−1 = 1 in Z/pZ for any non-
zero element a. Thus if we wish to check whether a number N is composite we can
try to find a so that aN−1 6= 1 in Z/NZ. This is already a good check to see that
N does not have square factors.

Lemma 7. When N is an odd number that has square factors, let us define the set
of “bad” elements S

S = {a ∈ Z/NZ|aN−1 = 1}
Then, the cardinality of S is at most 2N/9. If N has no prime factors smaller than
p this can be improved to (p− 1)N/p2.

The proof depends on the following very important result
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Proposition 8. The group of units in Z/peZ is cyclic for any odd prime number
p and any e ≥ 1.

We will defer the proof of this proposition to the next subsection.

Proof. (of the lemma) Since N is odd and has square factors there is an odd prime p
and an e ≥ 2 so that pe is the exact power that divides N . Any element a ∈ S gives
an element b in Z/peZ so that bN−1 = 1. Since the latter group is cyclic of order
pe− pe−1 it follows that the number of possible values of b is gcd(N − 1, pe− pe−1)
(exercise!). Since p divides N , this GCD is equal to gcd(N − 1, p− 1), which is not
more than p− 1. The fraction of such b’s is thus at most (p− 1)/p2 (since e ≥ 2).
By the Chinese remainder theorem, the set S is the same fraction of elements of
Z/NZ. ¤

While this result is useful to know, one can write numbers (which are called
Carmichael numbers) such as N = 561 = 3 × 11 × 17, with the property that the
order of every unit in Z/NZ divides N −1. The necessary improvement on the test
was suggested by Miller and Rabin.

We write N = 1 + q2k with q odd. Now, when N is a prime, Z/NZ is a field.
Thus, the only element other than 1 whose square is 1 is −1. It follows that for any
a 6= 0, either aq = 1 or there is some e between 0 and k−1 so that aq2e

= −1. Now
we have seen that computing powers in Z/NZ is easily done. Thus we can pick any
a and form the powers aq2e

for 0 ≤ e < k in succession. If aq 6= 1 and none of these
powers is −1, then N must be composite. On the other hand, it could happen that
for all the a’s we pick either aq = 1 or some aq2e

= −1. In this case we appear to
have obtained no information. However, we have

Lemma 9. Let N be a composite number of the form 1 + q2k. Let us define the
set of “bad” elements

T = {a ∈ Z/NZ|aq = 1 or aq2e

= −1 for some e with 0 ≤ e < k }

Then, the cardinality of T is less than N/4.

Proof. Let us write the prime factorisation N = pe1

1 · · · per
r . Now, if a is in T , then

clearly aq2k

= 1, so a is also in the set S defined earlier. Since 2N/9 < N/4 (!)
we may as well assume that ei = 1 for all i. In other words, we assume that N
is a product of distinct prime factors. Now, we write pi = 1 + qi2

ki with qi odd;
for later use we note that k is not less than the minimum of the ki’s. We further
decompose T into the set T−1 = {a|aq = 1} and the sets (for 0 ≤ e < k)

Te = {a|aq2e

= −1}

Then, elements of T−1 reduce to units in Z/piZ which have order dividing q. This
is a subgroup of order gcd(q, pi − 1) = gcd(q, qi). Thus, by the Chinese remainder
theorem

#T−1 = gcd(q, q1) · · · gcd(q, qr)

The elements of Te, can be characterised as elements, whose q-th power has order
exactly 2e+1. These q-th powers then have order exactly 2e+1 when reduced modulo
pi. In particular, this means that e < ki for every i; the other Te’s are empty. There
are exactly gcd(q, qi)2

e+1 elements in Z/piZ with order dividing q2e+1 and among
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these a subgroup of index 2 has elements of order dividing q2e (a subgroup of a
cyclic group is cyclic). Thus, by Chinese remainder theorem we obtain

#Te = gcd(q, q1) · · · gcd(q, qr) · 2re

Thus we see that the cardinality of T is

gcd(q, q1) · · · gcd(q, qr)

(

1 +
l−1
∑

i=0

2re

)

= gcd(q, q1) · · · gcd(q, qr)

(

2rl + 2r − 2

2r − 1

)

where l is the minimum of the ki’s. Now, the Chinese remainder theorem shows
that the number of units in Z/NZ is precisely q1 · · · qr · 2

∑

i ki ; this is at least one
less than N . Thus the proportion of elements in T is strictly smaller than

gcd(q, q1) · · · gcd(q, qr)

q1 · · · qr

· 2rl + 2r − 2

(2r − 1) · 2k1+···+kr

The first term is no more than 1, while the second is no more than 1/2r−1 (note
that l ≥ 1). Thus, we obtain the result unless r = 2. Moreover, if k2 > k1 (or vice
versa) then we see that the second term is no more than 1/2r so we have the result
in this case as well. Thus we may assume that k1 = k2 = l. Now, if gcd(q, q1) < q1

then (since these are odd numbers and one divides the other) gcd(q, q1) ≤ 3q1. This
implies that the above expression is no more than 1/6. Thus, we may further assume
that gcd(q, q1) = q1. By expanding the identity (1 + q2k) = (1 + q12

l)(1 + q22
l) we

see that gcd(q, q1) = gcd(q, q2). Since the primes p1 and p2 are distinct q1 6= q2;
thus q1 = gcd(q, q1) ≤ 3q1 as above. Now we again obtain that the above expression
is no more than 1/6. This completes the argument. ¤

What the above reasoning amounts to is that if we choose uniformly among all
possible a’s in Z/NZ, there is a chance of less than 1/4 that we will pick an a which
gives “no information” as the output of our test even though N is composite. This
is not “no information” at all! If we repeat this test n times there is a chance of
less than (1/4)n that N is composite and we did not detect it. It seems more than
reasonable to call an N that satisfies such a test a strong pseudo-prime. When we
specify the a1, a2, . . . , an, we say that N is a strong pseudo-prime with bases a1,
a2, . . . , an.

While have not actually proved that N is a prime in such a case (unlike trial
division) there appears to be good enough reason to treat it like a prime. In later
sections we will look at primality tests and primality certificates. It is clear that
we should not even attempt those unless we have already put our N through the
Miller-Rabin grinder and it has come out successful!

4.5. Hensel’s lemma. We conclude this section with a proof of the proposition 8.
The group of units in Z/peZ is of order pe − pe−1 = pe−1(p− 1), thus it is enough
to find elements of order p− 1 and pe−1 in this group. First we prove a result that
will be useful in other contexts

Lemma 10 (Hensel’s lemma). Let f(T ) = T d + a1T
d−1 + · · · + ad be a (monic)

polynomial with integer coefficients ai. Let n be an integer so that f(n) is divisible
by p, and f ′(n) = dnd−1 + a1(d − 1)nd−2 + · · · + ad−1 is not divisible by p. Then
there is a sequence of integers nk for every k ≥ 1, so that n1 = n, nk+1 − nk is
divisible by pk and f(nk) is divisible by pk. Moreover, nk is uniquely determined
modulo pk.
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Proof. The proof closely mimics Newton’s method of finding roots. Having already
found nk we need to find nk+1 = nk + bkpk so that f(nk+1) is divisible by pk+1.
By the binomial expansion (or Taylor series!),

f(nk + bkpk) = f(nk) + bkpkf ′(nk) (mod pk+1)

using 2k ≥ k + 1 since k ≥ 1. We are given f(nk) = ckpk for some constant ck.
Moreover, nk = n (mod p) so f ′(nk) = f ′(n) (mod p) is an invertible element of
Z/pZ. Let m be an inverse so that mf ′(nk) = 1 (mod p). We put bk = −mck and
obtain the required condition. ¤

We now apply this to the polynomial f(T ) = T p−1 − 1 and any integer n prime
to p to conclude that there is an integer ne so that np−1

e = 1 (mod pe) (note that
f ′(T ) = −T p−2 (mod p)). This gives us the required elements of order p− 1 (since
such exist modulo p). Moreover, we see that the units in Z/peZ can be written as
gau where g is an element of order (p − 1) and u = 1 (mod pe). Let U1 be the
group of elements of the latter kind. We will now apply log and exp in a suitable
way to conclude the result.

Lemma 11. (1) Let x be divisible by p then the power of p that divides xn/n
is at least n − [logp(n)], where the latter term denotes the integral part of
logp(n). In particular, this goes to infinity with n.

(2) Let x be divisible by p, then the power of p that divides pn/n! is at least
n−∑i>0[n/pi]. In particular, if p is odd then the latter term goes to infinity
with n.

Proof. Exercise. ¤

It follows that only finitely many terms of the power series

log(1− x) = −
∑

i≥0

xi

i + 1

survive in Z/peZ when we substitute x by a multiple of p. Thus we obtain a map

log : U1 → Z/peZ

which in fact takes values in the ideal pZ/peZ, which isomorphic to the additive
group Z/pe−1Z. Elementary manipulations of the power series combined with the
binomial theorem and the fact that all but finitely many terms are zero can be used
to show that log(1 + x · y + x + y) = log(1 + x) + log(1 + y). Similarly, for p odd
we obtain a map

exp : pZ/peZ → U1

by means of the usual power series

exp(x) =
∑

i≥0

xi

i!

which satisfies exp(x + y) = exp(x) · exp(y). We also check by direct substitution
that log(exp(x)) = x and vice versa. It follows that the group U1 is isomorphic to
the group pZ/peZ which is in turn isomorphic to Z/pe−1Z. We note in passing that
a generator g of U1 of order pe−1 corresponds to the generator p in pZ/peZ via the
expression g = exp(p)!


