
SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 9

2. Greatest common divisor

This algorithm is perhaps the most common operation that is used in computing
with large integers after the basic operations. It is also the first an algorithm was
written (since this algorithm was written before the base 10 arithmetic operations
that we saw earlier). We will study three algorithms and their extensions. The
fundamental question is to find the greatest common divisor or highest common
factor d of a pair a, b of integers. One also knows that there is a formula ax+by = d
and in some applications it is necessary to determine x and y as well. A more general
problem that this is to find a free basis for a subgroup of a free group (or “lattice”).
We will see how to solve that problem in later sections.

2.1. Euclid’s algorithm. The original algorithm of Euclid goes as follows. If b = 0
then d = a and we stop. Else we compute, a = b · w + r. We then iterate with b
taking the place of a and r taking the place of b.
Since we are dealing with a, b each involving many (say N) “digits”, each division

takes N2 steps as we saw earlier. Since, these divisions are iterated until we reach
the GCD (which could be 1) we could iterate N times and get a total of N 3 steps.
This seems too large for such a fundamental operation. So we should first get a
better estimate for the number of steps and then take into account the decreasing
sizes of a and b.

Lemma 3. Let a > b > 0 be such that Euclid’s algorithm takes exactly n steps and

a is the least possible with this property. Then a = Fn+2 and b = Fn+1, where Fn

defined inductively by F0 = F1 = 1 and Fn+1 = Fn + Fn−1.

The proof is related with continued fractions from which it also follows that Fn

is like Cn for some constant C > 1. Thus it follows that we actually need only a
constant multiple of log(N) steps. It can also be noted that a and b are often of the
same size (especially after the first iteration). In this case w is small so the long
division takes less steps than expected.
We will study the proof of the lemma when we look at real quadratic number

fields.

2.2. Binary GCD algorithm. Using the idea that division and multiplication by
powers of two is a “quick” operation for computers (based on binary arithmetic)
and the fact that the difference between two odd numbers is even, we can write an
algorithm for GCD that does not use division (except by 2) at all.
First of all we find the 2-adic values (say m and n) of a and b and also replace

a and b by a/2m and b/2n respectively. As we saw above this can be done in time
that is linear in the size of a and b. Let k denote the minimum of m and n. We
now begin the iterative step.
For this iteration a and b will always be odd. First we compute c−ρ ·M p = a−b

(where ρ is the “borrow”). If ρ = 1, then we replace c by its bitwise negation
bneg(c) and then add 1 (this replaces c by M p − c; the sign of c is then (−1)ρ).
If c is zero then the GCD is 2k · a. Otherwise, we calculate the 2-adic value l of c
and replace c by c/2l so that c is odd once more. Since l is usually a smaller than
log(M) this step is linear in the size of c. Now if ρ = 1 then we replace b by c and
if ρ = 0 then we replace a by c and iterate. (Thus we replace a if it is larger and b
if it is larger).

10 KAPIL HARI PARANJAPE

Note that this involves no divisions at all. Thus it can be very fast in principle.
Each iteration reduces the size of the largest of a and b by at least one bit. Thus
there are at most as many steps as log2(a). Moreover, if a = 2

N − 1 and b = 1,
then we can see that the process takes exactly N steps. Thus, quite often an initial
division is performed in order to ensure that a and b have roughly the same size
(this condition reduces the number of iterations for all GCD algorithms).

2.3. Lehmer’s Algorithm. An alternate approach to speeding up Euclid’s algo-
rithm is due to Lehmer. One notices that when a and b have the same size, the
integer part w of the quotient a/b is often single digit. Secondly, the process under-
lying Euclid’s algorithm is the application of successive linear transformations (we
will see this also in the Extended GCD computations later)

(

u
v

)

7→

(

A B
C D

)

·

(

u
v

)

=

(

Au+Bv
Cu+Dv

)

Thus, we can repeatedly try to find the w as long as it is “small” and keep track of
the operations involved by means of a matrix. When we cannot proceed further, we
apply this matrix to the original data, and then try again. Occasionally, we many
have to break out of a “deadlock” by performing a long division.
One way to check that w is small is to compare it with the quotient a0/b0 of

the leading digits of a and b, when a and b have the same number of digits. More
specifically if the integer part of a0/(b0 + 1) and the integer part of (a0 + 1)/b0 are
equal, then they are equal to w. The detailed algorithm is given below (we assume
a ≥ b).
If b is a single digit then we apply Euclid’s algorithm to get the answer. Oth-

erwise, we set x to be the leading digit (in base M) of a and y to the the leading
digit of b at the same place (i. e. if a = (a0 . . . ap) then b = (b0 . . . bp) for the same
p). We compute the invertible matrix (A B

C D), by an iteration of the following steps
after initialising it as the identity matrix.
We compute the integer quotient w1 of (x+A)/(y+C) and the integer quotient

w2 of (x + B)/(y + D). We set w = w1 if w1 = w2 and perform the matrix
multiplication

(

0 1
1 −w

)

·

(

A B
C D

)

=

(

C D
A− wC B − wD

)

We then replace our matrix by the resulting matrix. Similarly, we replace x by y
and y by x− wy. Then we iterate.

Lemma 4. In the above situation at most one of y+C and y+D is 0. Moreover,

we have the inequalities

0 ≤ x+A ≤M 0 ≤ x+B < M

0 ≤ y + C < M 0 ≤ y +D ≤M

This ensures that all operations involved in this part of the computation are
digits. This procedure will exit when w1 6= w2 or when one of y +C or y +D is 0.
If the matrix computed has B = 0 then we need to perform a long division

operation using a and b (this case occurs only when the first w1 and w2 and do not
match). Otherwise, we replace a by Aa+Bb and b by Ca+Db and go back to the
start.

SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 11

The advantage of this procedure is that long division is only performed when
absolutely essential; i. e. when the quotient w is larger than M . One can show that
this case occurs sufficiently infrequently to account for the overhead of computing
the matrix (A B

C D).

Proof. (of the lemma) We only need to note that at any stage x and y are the result
of applying Euclid’s algorithm to the original pair x and y. Similarly, x + A and
y + C at the same stage are the result of applying Euclid’s algorithm to the pair
x+1 and y; and x+B and y+D are associated to the pair x and y+1. The lemma
follows from the consequence (of Euclid’s algorithm) that these are all decreasing
and initially lie between 0 and M . ¤

2.4. Extended GCD. Quite often we not only need to know the GCD of two
integers a and b but also to write this GCD in the form ax+ by. In other words we
need to solve the equation ax + by = c when c is the GCD. In fact we can define

the GCD as the smallest c that satisfies this equation. Equivalently, we can define
the GCD as the smallest z such that there is a pair (x, z) so that z− ax is divisible
by b. Thus we can start with some “obvious” pairs and use them to construct new
ones which are smaller.
First of all let us follow Euclid’s approach. Suppose a ≥ b. Let u0 = (1, a) and

v0 = (0, b). If b = 0, then our solution is (x, z) = (1, a). We compute, q0 = [a/b]
(the integer part of a/b) and set

v1 = (v1,1, v1,2) = u− q · v

u1 = (u1,1, u1,2) = v

Proceeding inductively, if vi,2 = 0 then (x, z) = ui is a solution. Otherwise, we let
qi = [ui,2/vi,2] and set

ui+1 = (ui+1,1, ui+1,2) = vi

vi+1 = (vi+1,1, vi+1,2) = ui − qi · vi

We then iterate, until vi,2 = 0, which is becoming smaller at each step. Clearly,
the first step is a special case for i = 0 of the remaining steps1. At the end we take
y = z − ax/b. Then ax+ by = z and z is the GCD of a and b.
Extending Lehmer’s approach is very similar. As above, suppose that a ≥ b and

let u0 = (1, a) and v0 = (1, b). We are at the step i = 0. If vi,2 = 0, then our
solution is ui. Now let x denote the leading “digit” of ui,2 and y denote the leading
digit of vi,2 at the same place (as in Lehmer’s algorithm). We carry through the

process of Lehmer’s algorithm to compute the matrix
(

Ai Bi

Ci Di

)

. If B = 0 then we

calculate qi = [ui,2/vi,2] and set as above,

ui+1 = (ui+1,1, ui+1,2) = vi

vi+1 = (vi+1,1, vi+1,2) = ui − qi · vi

1One thing that needs to be stated is that we are repeatedly assigning values to variables. In

the interests of efficiency, any algorithm that deals with multi-precision arithmetic should create
new variables (allocate memory) and put values in them infrequently. One way to do this is to

decide in advance (by a priori calculations) how many variables we will need and how large they

can get. Then we keep track of value variable “names” by means of a symmetric matrix (the

number of variables is likely to be much smaller than the numbers we are dealing with).

12 KAPIL HARI PARANJAPE

Otherwise (B 6= 0) we set

ui+1 = Aui +Bvi

vi+1 = Cui +Dvi

We then iterate the procedure until vi,2 becomes zero, which it must since it is
decreasing at each step (this argument is as in the case of Lehmer’s algorithm). At
the end we take y = z − ax/b. Then ax+ by = z and z is the GCD of a and b.
Finally, we turn to the binary GCD technique. As usual, if b is zero then we have

the solution (x, y, z) = (1.0, a); if a is zero then we have the solution (x, y, z) =
(0, 1, b). Otherwise, we take k to the minimum of the 2-adic values of a and b. Let
c = a/2k and d = b/2k. Now, if d is even, then we interchange c and d and keep
track of this interchange by setting a flag f to 1.
We may now assume that we have d odd and c non-zero. We will start with the

pairs u1 = (1, c) and v1 = (0, d) at i = 1. At each stage wi will be a pair in which
the second part is even. Thus, if c is odd we put w1 = u1 − v1, else (if c is even)
we put w1 = u1.
Now we perform the following steps inductively. First of all if wi,2 = 0 then

(x, z) = ui is the required pair and we exit the induction. Next we remove powers
of two from wi. For this we take z1,i = wi and induct on zk,i as follows.

zk+1,i =

{

1
2
· (zk,i,1, zk,i,2) if zk,i,1 is even

1
2
· (zk,i,1 + d, zk,i,2) if zk,i,1 is odd

Note that, by induction on k, d divides zk+1,2 − czk+1,1 in both cases. We stop as
soon as zk,i,2 is odd and put zi = zk,i.
The last inductive step is the re-assignment. If zi,2 is negative, then we take

vi+1 = −zi and ui+1 = ui, otherwise we take ui+1 = zi and vi+1 = vi. Then we
put wi+1 = ui+1 − vi+1 and induct.
When we exit the induction, we have (x, z) so that d divides z − cx, so let

y = z − cx/d. If f = 0, then we have ax + by = 2kz, while if f = 1 then we have
ay+ bx = 2kz. In both cases 2kz is the GCD of a and b (this follows since the steps
that we are performing on the second part of the pairs ui and vi are exactly the
same as those for binary GCD).

