
62 KAPIL HARI PARANJAPE

11. Algorithms for groups

The following section is loosely based on the study of algorithms for groups as in
the work of Schoup, Schnorr, Buchmann and others. How does one specify a group
to a computer? First of all the elements of the group are represented by “words”
of some fixed length (bitstrings of a fixed length). Let us denote the set of such
words by F . However, since the group does not have order a power of two, not all
such words will be elements of the group. Thus we have a membership function
µ : F → {0, 1} that takes the value 1 for elements of the group. We then have the
group operations which usually “expand” the word length. In other words we have
a superset F 2 containing F which has “double words” (words of twice the size of
those in F) and the group multiplication operation usually gives m : F × F → F 2.
There is usually also an inverse operation i : F 2 → F 2 which takes F to itself; more
often a “ratio” operation d : F × F → F 2 is provided instead. Finally, there is a
reduction operation r : F 2 → F . The actual group operations are defined by

x · y = r(m(x, y))

x · y−1 = r(d(x, y))

x−1 = r(i(x, y))

This specification should satisfy the condition that these operations, when restricted
to the set G = µ−1(1) satisfy the axioms for an abelian group. We will assume that
such a collection of operations has indeed been provided to us as a “black box”.
We will look at algorithms that study the properties of this group without looking
into the details of how the maps µ, m, d and r are defined. Some have called this
the study of “generic group algorithms”.
One way to represent a finite abelian group G and compute its structure is to

write it via generators and relations. Suppose we are given a collection g1, g2, . . . ,
gr of generators of G and we can find a collection ρ1, ρ2, . . . , ρs of relations of the
form

ρj =
∏

i

g
aij

i

If this collection of relations is sufficient, we obtain an exact sequence

Z
s A−→ Z

r g−→ G→ 0

where A is given by the matrix (aij) and g the “vector” of generators of G. Such
a description reduces the computation of the abstract structure of G to matrix
manipulations. For example, by reducing the matrix to echelon form we can exhibit
an isomorphism from a product of cyclic groups to the group G. However, it is not
so easy(!) to write the inverse of this isomorphism. To do that one must exhibit a
(computable) set-theoretic splitting G→ Z

r. One way to compute such a splitting
on an element g of G is to find enough relations between g and the collection of the
gi’s. It is thus clear that the important problem in the algorithmic analysis of finite
abelian groups is that of finding (sufficiently many) relations between elements of
the group.
There are essentially three classes of “generic group algorithms” which can be

called the Pollard ρ method, Shanks’ Baby Step Giant Step method and the Pohlig-
Hellman factor method. We illustrate these methods by seeing how they can be
used to find a relation between some given elements g1, g2, . . . , gr of the group.

SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 63

11.1. Pollard’s ρ. This method uses the least amount of information about the
group and also uses the least amount of storage. We choose a “random” partition
of the elements of the group into disjoint sets S0, S1, . . . , Sr (which are specified
by their membership functions µi). We now define a collection of maps as follows.
Start with a “random” element x0 of the group. Let v0 = (0, . . . , 0) be the origin
in the group Z

r. We define an iterated map as follows

(xi+1, vi+1) = Φ(xi, vi) =

{

(x2
i , 2 · vi) xi ∈ S0

(gj · xi, ej + vi) xi ∈ Sj

By the techniques due to Pollard, Brent and Floyd described earlier we can find
an integer T such that (x2T , v2T) = (xT , vT). It follows that if v2T − vT =
(a1, a2, . . . , ar), then

∏

i

gai

i = 1

Some aspects of Brent’s method can be used to further ensure that vi does not grow
too large (since we are only interested in v2T − vT). Assuming that the choice of
Si is “random” enough we should be close to a relation of the smallest size in the
sense that

∑

i ai is the shortest. That is also an estimate of the number of steps
upto a small constant factor.

11.2. Shanks’ Baby step-Giant step. Now suppose that we know that we are
given bounds L1, L2, . . .Lr with the assurance that there is a relation

∏

i q
ai

i with
0 ≤ ai < Li. (We will see below how such a collection of bounds can be constructed
inductively given a bound L on the order of G).
Let h(x) be a collision free function for x ∈ G (for example h is a “hash func-

tion”). Let (a1, . . . , ar) be a sequence with ai an integer not larger than ni = d
√
Lie.

We compute the terms

(
∏

i

gai

i ; a1, . . . , ar;h(
∏

i

gai

i))

for all ai in this range and store them sorted according the final entry. This allows
us to perform a search operation in a time proportional to the logarithm of the
length of the list. Now, for each sequence (b1, . . . , br) where bi is an integer not
larger than b

√
Lic+1, we compute the expression h(

∏

i(g
−ni

i)bi) and try to find it
in the given sorted list. Clearly, if it is found then we have a relation of the form

∏

i

gai+nibi

i = 1

By the given assertion on Li, such relation will eventually be found.
One way to approach this algorithm given only a bound on the size of the group

G is to go inductively. First find a relation involving g1 alone (in other words find
the order of g1) by using L1 = L. For the remainder of the algorithm we put
L1 = o(g1) as found in this step. In the second iteration we work with g1 and g2

with L2 = L/L1. Iteratively, we would have computed Li which is the order of
gi in the group G/ < g1, . . . , gi−1 >. We now work with g1, . . . , gi+1 and take

Li+1 = L/(
∏i

k=1 Li). Using the above algorithm we obtain the order of gi+1 in the
group G/ < g1, . . . , gi >. For the remainder of the iterations we take Li+1 to be
this order. Thus, at the end we would have found a minimal relation among the
gi’s rather than just one relation.

64 KAPIL HARI PARANJAPE

11.3. Pohlig-Helman factor method. We now assume that we are given the
factorisation of the order n of the group G and we want to find another relation
which is smaller than the obvious relation (n, . . . , n).
Let p be a prime factor of n and k such that pk|n while pk+1 6 |n. Replacing gi

by g
n/pk

i , we have effectively replaced the given problem to the case of G(p), the
p-adic part of G. By the Chinese Remainder Theorem these solutions can later be
combined. Thus we may assume that the order of G is a power pk of a prime p.
In the case when k = 1 we can apply the Baby step-Giant step method to find a

relation as above. When k > 1, we inductively find a relation (b1, . . . , br) between
the elements gp

i which lie in the group Gp which has order pj for some j < k. Now,
we only need to find (again using the Baby step-Giant step method) a sequence
(a1, . . . , ar) with ai < p such that

∏

i

gai

i ·
∏

i

gpbi

i = 1

Note that the same sorted list can be used in each step of this induction.
This algorithm can also be applied in the case when we do not know a factori-

sation of n but we have some given finite set of “small” primes which are known to
factorise n completely.

11.4. Other problems. Once sufficiently many relations between a collection of
generators of the group G has been found, we have seen above that one can “read
off” many of the properties of G such as its isomorphism class. The above algo-
rithms for finding relations can be applied directly to solving other problems or
questions regarding the group G.
To find the order of the group G we use the above techniques to find (in succes-

sion) the order ni of a randomly chosen element gi in the group G/ < g1, . . . , gi−1 >.
This probabilistically determines the order of G as the product of the ni.
Given h and g in G and the fact that h is a power of g we determine this power

(the Discrete Log problem) by finding a minimal relation between g and h.

11.5. Applicability and efficiency. The fundamental theorem for finite abelian
groups states that every abelian group is isomorphic to product of cyclic groups.
We have seen that the all-pervading question in algorithmic abelian group theory
is “To what extent can we (efficiently) compute this isomorphism and its inverse?”
Because of the efficiency aspect it is important to count the number of steps and
the amount of storage that our algorithms require. In such measurement numbers
of the size of the cardinality of F are considered “large”, numbers of the size of the
number of bits in the elements of F are considered “reasonable” and numbers of the
size of the logarithm of the latter number are considered “small” or insignificant.
One can show that the expected running time of the algorithms described above is

of the same order as the bounds available. Since these bounds are crudely measured
as the order of the group G this makes the algorithms “slow”. However, in a given
case where not enough information is available or it is suspected that the elements
gi generate a much smaller group one can start with artificially chosen small bounds
and run the algorithms; if the assumptions (on the “real” bounds) are valid these
will run to completion.

SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 65

11.6. Index calculus. Another useful tool goes by the name “Index Calculus”.
Suppose that we are given a set of generators g1, . . . , gr of G and another “black-
box” which computes a function A : G×R→ Z

r; here R is used to denote random
input. The property of A is that given (g, k) (with k random) the output is an
r-tuple (a1, . . . , ar), such that with probability greater than 1− (1/2)r+t (for some
small integer t) we have the relation

gk =
∏

i

gai

i

(Note that one can quickly check whether this is indeed true). We can use such
a black-box A to give a probabilistic solution to the group structure problem. By
running the algorithm at most r + t times we will (with high probability) obtain
sufficiently many relations to write g in terms of the elements gi. Thus we can use
this to construct a probabilistic algorithm that splits the map Z

r → G as required.
Since this algorithm makes use of one additional “black-box” it is not a “generic

group algorithm”.

