APPENDIX A. A MISSING LEMMA

Let K be a finite field extension of \mathbb{Q} . Let w_1,\ldots,w_r be a basis of K as a vector space over \mathbb{Q} . Let M be the subgroup of K generated by the w_i 's. Let R be the collection of all elements α in K such that $\alpha \cdot M \subset M$. Let M^{-1} be the collection of all α in K such that $\alpha \cdot M \subset R$. We had claimed in an earlier version of these notes that $M \cdot M^{-1} = R$.

However this statement is false in general. As we show below this can be reduced to the case when $M = \check{R}$. In which case what is being asserted is that R is Gorenstein. But one can give an example of a non-Gorenstein number ring R.

Let Trace: $K \to \mathbb{Q}$ denote the trace map. The \mathbb{Q} -linear symmetric form $(\alpha, \beta) = \operatorname{Trace}(\alpha\beta)$ is non-degenerate. Let \check{M} denote the collection of all α in K such that $(\alpha, M) \subset \mathbb{Z}$; similarly, let \check{R} denote the collection of all α in K such that $(\alpha, R) \subset \mathbb{Z}$. Let $C_R = (\check{R})^{-1}$ be the collection of all elements α in K such that $\alpha \cdot \check{R} \subset R$. We claim that:

$$M \cdot \check{M} = \check{R}$$

$$C_R \cdot \check{R} = R$$

Together these conditions imply that $M \cdot \check{M} \cdot C_R = R$. It follows that $\check{M} \cdot C_R \subset M^{-1}$ and hence $M \cdot M^{-1} = R$.

Let v_1, \ldots, v_r be elements of K such that $(v_i, w_j) = \delta_{ij}$, where the latter is the Kronecker delta; \check{M} is the group generated by the v_i 's. To every element α of K we can associate a matrix $A(\alpha)$ by putting $A(\alpha)_{ij} = (\alpha, w_i v_j)$ and then $\alpha w_i = \sum_j A(\alpha)_{ij} w_j$. This gives a homomorphism from K to $r \times r$ matrices over $\mathbb Q$ such that R is precisely the collection of elements whose images are matrices with entries in $\mathbb Z$. Moreover, $\operatorname{Trace}(\alpha) = \operatorname{Trace}(A(\alpha))$, where the latter is the trace $\sum_i A(\alpha)_{ii}$ in the usual sense, of the matrix A. For any matrix S we can define an element r(S) by the condition $(r(S), \beta) = \operatorname{Trace}(S \cdot A(\beta))$. It follows that $r(A(\alpha)) = \alpha$.

Now, the group D of integer matrices is self-dual under the pairing $(T,S) = \operatorname{Trace}(TS)$. The image of R in this group D is "saturated", i. e. if T is a matrix such that nT is in the image of R for some non-zero integer n, then T is in the image of R. It follows that $r(D) = \check{R}$. Now, D is the free group on the elementary matrices E_{kl} whose only non-zero entry is a "1" in the (k,l)-th place. For any matrix S we have $(E_{kl},S)=S_{kl}$. In particular, for any element α in K we have $(E_{kl},A(\alpha))=(\alpha,w_kv_l)$. Thus $r(E_{kl})=w_kv_l$ which is in $M\cdot\check{M}$. It follows that $M\cdot\check{M}$ is r(D) which is \check{R} , thus proving the first equality above.

A.1. Counterexample. Let R be a subring of a number field K and suppose that R is finitely generated as an abelian group. Let $(\alpha, \beta) = \operatorname{Trace}(\alpha\beta)$ denote the non-degenerate symmetric form on K as above. Also let \check{R} be the collection of elements α in K such that $(\alpha, R) \subset \mathbb{Z}$. Now let α be any element of K such that $\alpha\check{R} \subset \check{R}$. Then we have $(\alpha, \check{R}) \subset \mathbb{Z}$. By the non-degeneracy of the pairing we see that α lies in K. Thus by putting $K = \check{R}$ we see that $K = \check{R}$ is precisely the ring associated by $K = \check{R}$ in the leading paragraph of this section. Thus to provide a counterexample to the stated result it is enough to show that there is an $K = \check{R}$ such that $\check{K}^{-1} \cdot \check{K}$ is strictly smaller than $K = \check{R}$.

Let b be an integer which is not a cube. Let K be the field obtain by adjoining a cube root β of b to \mathbb{Q} . Let a be any non-zero integer and let R be the subring of

K generated by $w_1 = 1$, $w_2 = a\beta$ and $w_3 = a\beta^2$. We have the identities

$$w_1^2 = w_1; w_1w_2 = w_2; w_1w_3 = w_3; w_2^2 = aw_3; w_2w_3 = a^2b; w_3^2 = abw_1$$

It follows that $\operatorname{Trace}(w_1) = 3$ and $\operatorname{Trace}(w_1) = \operatorname{Trace}(w_2) = 0$. Thus if $\alpha =$ $a_1w_1 + a_2w_2 + a_3w_3$ is such that $(\alpha, R) \subset \mathbb{Z}$ we obtain the conditions

$$3a_1 \in \mathbb{Z}; 3a^2ba_3 \in \mathbb{Z}; 3a^2ba_2 \in \mathbb{Z}$$

Thus a basis for \check{R} is given by $u_1 = w_1/3$, $u_2 = w_2/(3a^2b)$ and $u_3 = w_3/(3a^2b)$. Now suppose that $\alpha = a_1w_1 + a_2w_2 + a_3w_3$ is such that $\alpha \check{R} \subset R$. We obtain the conditions

$$a_1 \in 3a^2b \cdot \mathbb{Z}; a_2 \in 3ab \cdot \mathbb{Z}; a_3 \in 3a \cdot \mathbb{Z};$$

A basis for \check{R}^{-1} is thus given by $v_1 = 3a^2bw_1$, $v_2 = 3abw_2$ and $v_3 = 3aw_3$. We then compute

$$u_1v_1 = a^2bw_1; u_2v_3 = aw_1; u_3v_2 = abw_1$$

It follows that aw_1 is in the product $\check{R}^{-1} \cdot \check{R}$ but w_1 is not. Hence the product is strictly smaller than R.