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It is well known that first order logic cannot express various kinds of counting. One
option is to add counting quantifiers, but there are many ways of doing this, see for
example [8, 1, 14, 11]. Let us introduce some specific syntax for word models: we use
a set of variables V ar and in the signature we have binary predicates < and Suc (the
latter is definable using the former but may not be in fragments of the logic) and two
constants min,max for the ordering, and unary predicates a, a ∈ Σ, for the finite
alphabet Σ.

FO
t ::= c, c ∈ N | min | max | x, x ∈ V ar
α ::= a(t), a ∈ Σ | t1 < t2 | Suc(t1, t2) | t1 = t2 | κ | ¬ α | α ∨ β | ∃xα

We now introduce the syntax for the counting capabilities κ which extend FO. In the
most general setting FOunC, we have counting terms and allow their comparison. This
logic can define addition [5]. Hence, by an old result of Robinson [10], in the presence
of the unary predicates (for |Σ| ≥ 2), satisfiability is undecidable.

FOunC
t ::= c, c ∈ N | min | max | x, x ∈ V ar | #xα
κ ::= t1 ∼ t2,∼∈ {<,=} | t ≡ r( mod q)

In the more restricted FOmod, counting terms cannot be compared with each other:

FOmod
t ::= c, c ∈ N | min | max | x, x ∈ V ar
κ ::= #xα ∼ c,∼∈ {<,=} | #x(α) ≡ r( mod q)

For example we can define the abbreviated quantifier Odd yφ to stand for #y(φ) ≡ 1(
mod 2) and similarly Even yφ. A more complicated syntax can be used for allowing a
quantifier to do a computation in any finite group (not just a cyclic one). We call this
logic FOgrp, the syntax is in [13].

A further restriction FOlen only allows comparison of positions:

FOlen
t ::= c, c ∈ N | min | max | x, x ∈ V ar
κ ::= t1 ∼ c,∼∈ {<,=} | t ≡ r( mod q)

Since satisfiability of FO itself is nonelementary over words, it is of interest to study
the counting quantifiers in a weaker framework, such as two-variable logics [3, 4, 7, 15].

What is known about the satisfiability problems for these logics over word models?
The table gives a status report. The results which are not referenced are available in
the Ph.D. thesis [13]. The decidability proofs use a translation to temporal logic [12]
and then a small model construction [6]. The undecidability proof is a routine coding.

Two-variable logic |Σ| = 1 |Σ| ≥ 2

FO2[<,Suc] Nexptime[2]
FO2len[<,Suc] decidable (Nexptime)
FO2mod[<,Suc] decidable (Expspace)
FO2grp[<,Suc] decidable (Expspace)
FO2[<,+] undecidable
FO2unC[<,Suc] decidable [9, 11] undecidable [4]
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