
N-Body Simulations

•Why is high performance computing needed?

• The case of long range forces.

◦ Gravitational N-Body simulations.

• Cosmological N-Body simulations.



Why HPC?

• Real systems of interest often evolve at widely time scales, thus a large
number of time steps are required in the simulation.

• It takes a very large number of particles to capture essential features of
the system to be simulated.

• Systems of equations to be solved are complex and often do not have
any analytical solutions in the regime of interest.



CPU Time Requirements

• Consider a system ofNp particles. If we have to simulate its evolution
throughNt time steps andτs is the time taken per particle per step then:
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◦ Thus a large system cannot be simulated unless we can reduceτs.

◦ A system that has to be evolved through larger number of time steps
must be small, or we must be patient.



Memory Requirements

• If we haveNvar variables per particle, and double precision variables
then the memory requirements are:
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◦ The minimum number of variables per particle is about10. These are
mass, position, velocity and acceleration.

◦ If the time requirements are not a constraint, then often the upper limit
on the size of the simulation comes from total memory available.



Object Mass Size V |Egr| τcross
(M�) (pc) (km/s) (ergs) (years)

Binary Star 2 10−7 30 1048 1

Open Cluster 103 1− 10 10 1048 105

Globular Cluster 105 10 20 1050 106

Galaxies 108 − 1011 103 − 104 102 1056 − 1061 106 − 108

Galaxy clusters 1015 106 103 1065 108



Short Range Forces

• If the interaction is very short range, force due to the nearest
neighbours is needed and distant particles do not contribute significantly
to the force.

• Such simulations are challenging only if the time scale of local
motions is very small compared to the relaxation time of the system as a
whole.

• Such simulations are easy to parallelise on distributed memory
computers.



Long Range Forces

• Forces due to all the particles in the system are important, thus force
calculation is anO(N2

p ) process. Also,τ ∝ Np.

• The main aim in developing algorithms is to approximate the force
calculation so that it requires a smaller number of compute operations.

• Information on all particles is needed, hence communication overhead
can be very demanding on distributed memory computers.



Tree Code

• Given a sufficiently distant and compact group of particles, force due
to the group can be approximated by the force of a particle of the same
mass located at the center of mass.

◦We need a criterion to quantify whether a group of particles is far
enough, and compact enough.

◦We need to arrange particles in groups.

◦We need to estimate the error due to this approximation.



The Tree Method

• Distant groups of particles can be treated as a unit for the purpose of
force calculation.
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• Fractional error scales asθ2 is we retain only the mono-pole term and
θ4 if we include the quadruple term, hereθ = d/r.



The Tree Method

• For θ = 0.5, the worst case error is close to20% if we do not include
the quadruple term. With this term the maximum error is2%.

• For θ = 0.25, the worst case error is close to5% if we do not include
the quadruple term. With this term the maximum error is0.12%.

◦ In generic cases the error is much smaller.

◦ Error decreases as we increaseNp.

• Larger values ofθ should not be used as this can lead to large errors,
even though errors for generic distributions of particles are small.

• If θ ≥ 1/
√

3 then it is important to ensure that there is no self force.



Barnes-Hut Tree Code

• The Barnes and Hut method uses geometrical subdivision of the
simulation volume. This reduces the problem of force calculation to
O(Np log Np).

• The process of constructing the tree is iterative. The starting point is
the simulation volume.

• The simulation box is the “trunk”. This is sub-divided into smaller
volumes/cells at each level. The cells are “branches”. Cells are sub
divided till there is at most one particle in the smaller cells. Particles
correspond to “leaves”.





Parallelising Barnes-Hut Tree Code

• Calculation of force for each particle can proceed in parallel.

• Less information is required from distant parts of the particle
distribution, so grouping particles in domains will be useful.

• In absence of a mesh, recursive orthogonal bisection of the simulation
volume is used to construct domains.

• Other domains send the relevant part of the tree for completion of
force calculation. Number of communications requires is large and
grows asn2, n being the number of processors.
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Cosmological N-Body Simulations

• The universe does not have a boundary, so it is appropriate to use
periodic boundary conditions.

• The universe is expanding. This changes the nature of initial
conditions and the equations of motion.

• Hard scattering between particles is to be suppressed as each N-Body
particle represents a large number of real particles, each particles is
assumed to have a finite size.



Particle-Mesh (PM) Method

• Poisson equation is a simple algebraic equation in Fourier space.
Fast-Fourier method can be used to compute Fourier Transforms using
O(Np log Np) operations. FFT can also be used to compute the gradient
of the potential at grid points.

◦ FFT requires a uniformly spaced grid on which the fields are defined,
hence the mesh has to be of this type.

• Use particles to describe the density and velocity field.

◦ Use a grid to solve Poisson equation.

◦ Use interpolating functions to switch between the particles and the
grid/mesh.



PM Method

• Require the sum of weights to be unity. Difficult to construct a
spherically symmetric interpolation function.

• A convenient approach is to use the product of three one dimensional
weight functions,W = WxWyWz.

◦ This results in an anisotropic interpolation function, thus the effective
kernel is anisotropic.

• This is a very fast method for simulations.

◦ Periodic boundary conditions come free with FFT.

◦ The force is softened below grid scale, hence the evolution is
collisionless. However, the resolution is very poor.



PM Method: Parallelisation

• Dividing the simulation volume into slabs works well for PM codes.
(See PMFAST)

• Using FFTW facillitates parallelisation.

• Simulations with as many as109 particles have been done with parallel
PM codes.



Slab 1 Slab 2



TreePM Method: Force Decomposition

•We start by partitioning the Poisson equation:
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Herers is a scale that we have introduced. This is to be fixed using
estimation of errors.



TreePM Method: Force Decomposition

• Long range potential is calculated on the mesh using FFT:
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• The short range force is computed in real space using the tree method:
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TreePM Method: Errors

• For rs = 1 andθ = 0.5, 99% particles have less than0.8% error for a
clustered distribution. For an unclustered distribution,99% particles
have less than2% error.

For tree code (Hernquist and Bouchet, 1991), this figure varies between

1% and6%.



TreePM Method: Parallelisation

• Domain decomposition: Divide the simulation box into domains with
equal computational load for short range force calculation.

• Functional decomposition: Divide the computation of the short and
the long range force. Typically, only one CPU is sufficient for long
range force calculation.






