N-Body Simulations

- Why is high performance computing needed?
- The case of long range forces.

• Gravitational N-Body simulations.

• Cosmological N-Body simulations.

Why HPC?

• Real systems of interest often evolve at widely time scales, thus a large number of time steps are required in the simulation.

• It takes a very large number of particles to capture essential features of the system to be simulated.

• Systems of equations to be solved are complex and often do not have any analytical solutions in the regime of interest.

CPU Time Requirements

• Consider a system of N_p particles. If we have to simulate its evolution through N_t time steps and τ_s is the time taken per particle per step then:

$$\tau_{CPU} = N_p N_t \tau_s = 30 \ hours \ \left(\frac{N_p}{10^6}\right) \left(\frac{N_t}{10^3}\right) \left(\frac{\tau_s}{10^{-4}s}\right). \tag{1}$$

• Thus a large system cannot be simulated unless we can reduce τ_s . • A system that has to be evolved through larger number of time steps must be small, or we must be patient.

Memory Requirements

• If we have N_{var} variables per particle, and double precision variables then the memory requirements are:

$$M = 8N_p N_{var} = 80 MB \left(\frac{N_p}{10^6}\right) \left(\frac{N_{var}}{10}\right).$$
(2)

 \circ The minimum number of variables per particle is about 10. These are mass, position, velocity and acceleration.

 \circ If the time requirements are not a constraint, then often the upper limit on the size of the simulation comes from total memory available.

Object	${\sf Mass}\ (M_{\odot})$	Size (pc)	V(km/s)	$ E_{gr} $ (ergs)	$ au_{cross}$ (years)
Binary Star	2	10^{-7}	30	10^{48}	1
Open Cluster	10 ³	1 - 10	10	10^{48}	10^{5}
Globular Cluster	10^{5}	10	20	10^{50}	10^{6}
Galaxies	$10^8 - 10^{11}$	$10^3 - 10^4$	10^{2}	$10^{56} - 10^{61}$	$10^6 - 10^8$
Galaxy clusters	10 ¹⁵	10^{6}	10 ³	10^{65}	10 ⁸

Short Range Forces

• If the interaction is very short range, force due to the nearest neighbours is needed and distant particles do not contribute significantly to the force.

• Such simulations are challenging only if the time scale of local motions is very small compared to the relaxation time of the system as a whole.

• Such simulations are easy to parallelise on distributed memory computers.

Long Range Forces

• Forces due to all the particles in the system are important, thus force calculation is an $\mathcal{O}(N_p^2)$ process. Also, $\tau \propto N_p$.

• The main aim in developing algorithms is to approximate the force calculation so that it requires a smaller number of compute operations.

• Information on all particles is needed, hence communication overhead can be very demanding on distributed memory computers.

Tree Code

• Given a sufficiently distant and compact group of particles, force due to the group can be approximated by the force of a particle of the same mass located at the center of mass.

 \circ We need a criterion to quantify whether a group of particles is far enough, and compact enough.

 \circ We need to arrange particles in groups.

 \circ We need to estimate the error due to this approximation.

The Tree Method

• Distant groups of particles can be treated as a unit for the purpose of force calculation.

$$a = -\frac{GM}{(r-d/2)^2} - \frac{GM}{(r+d/2)^2}$$

= $-\frac{2GM}{r^2} \left(1 + \frac{3}{4}\frac{d^2}{r^2} + \frac{5}{16}\frac{d^4}{r^4} + \mathcal{O}\left(\frac{d^6}{r^6}\right)\right)$ (3)

• Fractional error scales as θ^2 is we retain only the mono-pole term and θ^4 if we include the quadruple term, here $\theta = d/r$.

The Tree Method

• For $\theta = 0.5$, the worst case error is close to 20% if we do not include the quadruple term. With this term the maximum error is 2%.

• For $\theta = 0.25$, the worst case error is close to 5% if we do not include the quadruple term. With this term the maximum error is 0.12%.

 \circ In generic cases the error is much smaller.

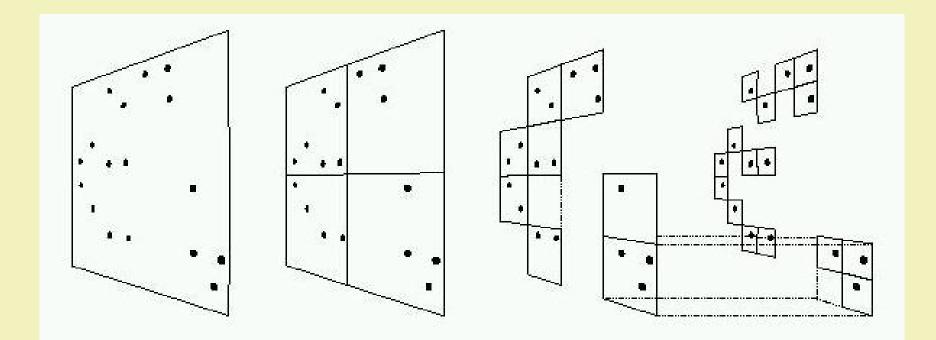
 \circ Error decreases as we increase N_p .

• Larger values of θ should not be used as this can lead to large errors, even though errors for generic distributions of particles are small.

• If $\theta \ge 1/\sqrt{3}$ then it is important to ensure that there is no self force.

Barnes-Hut Tree Code

- The Barnes and Hut method uses geometrical subdivision of the simulation volume. This reduces the problem of force calculation to $\mathcal{O}(N_p \log N_p)$.
- The process of constructing the tree is iterative. The starting point is the simulation volume.
- The simulation box is the "trunk". This is sub-divided into smaller volumes/cells at each level. The cells are "branches". Cells are sub divided till there is at most one particle in the smaller cells. Particles correspond to "leaves".



Parallelising Barnes-Hut Tree Code

• Calculation of force for each particle can proceed in parallel.

• Less information is required from distant parts of the particle distribution, so grouping particles in domains will be useful.

• In absence of a mesh, recursive orthogonal bisection of the simulation volume is used to construct domains.

• Other domains send the relevant part of the tree for completion of force calculation. Number of communications requires is large and grows as n^2 , n being the number of processors.

(0,3)	(1,3)	(2,3)	(3,3)	
(0,2)	(1,2)	(2,2)	(3,2)	
(0,1)	(1,1)	(2,1)	(3,1)	
(0,0)	(1,0)	(2,0)	(3,0)	

Cosmological N-Body Simulations

• The universe does not have a boundary, so it is appropriate to use periodic boundary conditions.

• The universe is expanding. This changes the nature of initial conditions and the equations of motion.

• Hard scattering between particles is to be suppressed as each N-Body particle represents a large number of real particles, each particles is assumed to have a finite size.

Particle-Mesh (PM) Method

• Poisson equation is a simple algebraic equation in Fourier space. Fast-Fourier method can be used to compute Fourier Transforms using $\mathcal{O}(N_p \log N_p)$ operations. FFT can also be used to compute the gradient of the potential at grid points.

 \circ FFT requires a uniformly spaced grid on which the fields are defined, hence the mesh has to be of this type.

- Use particles to describe the density and velocity field.
- Use a grid to solve Poisson equation.

 \circ Use interpolating functions to switch between the particles and the grid/mesh.

PM Method

• Require the sum of weights to be unity. Difficult to construct a spherically symmetric interpolation function.

• A convenient approach is to use the product of three one dimensional weight functions, $W = W_x W_y W_z$.

• This results in an anisotropic interpolation function, thus the effective kernel is anisotropic.

- This is a very fast method for simulations.
- \circ Periodic boundary conditions come free with FFT.

• The force is softened below grid scale, hence the evolution is collisionless. However, the resolution is very poor.

PM Method: Parallelisation

• Dividing the simulation volume into slabs works well for PM codes. (See PMFAST)

• Using FFTW facillitates parallelisation.

• Simulations with as many as 10⁹ particles have been done with parallel PM codes.

Slab 1	Slab 2

TreePM Method: Force Decomposition

• We start by partitioning the Poisson equation:

$$\nabla^{2} \varphi = 4\pi G \varrho$$

$$\nabla^{2} \varphi_{l} = 4\pi G \varrho \exp\left[-r^{2}/r_{s}^{2}\right]$$

$$\nabla^{2} \varphi_{s} = 4\pi G \varrho \left(1 - \exp\left[-r^{2}/r_{s}^{2}\right]\right)$$
(4)

Here r_s is a scale that we have introduced. This is to be fixed using estimation of errors.

TreePM Method: Force Decomposition

• Long range potential is calculated on the mesh using FFT:

$$\phi_{l \mathbf{k}} = -\frac{4\pi G \varrho_{\mathbf{k}}}{\mathbf{k}^2} \exp\left[-k^2 r_s^2\right]$$
(5)

• The short range force is computed in real space using the tree method:

$$\mathbf{f}_s = -\frac{G\mathbf{r}}{r^3} \left(\operatorname{erfc}\left(\frac{r}{2r_s}\right) + \frac{r}{r_s\sqrt{\pi}} \exp\left[-\frac{r^2}{4r_s^2}\right] \right) \tag{6}$$

TreePM Method: Errors

• For $r_s = 1$ and $\theta = 0.5$, 99% particles have less than 0.8% error for a clustered distribution. For an unclustered distribution, 99% particles have less than 2% error.

For tree code (Hernquist and Bouchet, 1991), this figure varies between 1% and 6%.

TreePM Method: Parallelisation

• Domain decomposition: Divide the simulation box into domains with equal computational load for short range force calculation.

• Functional decomposition: Divide the computation of the short and the long range force. Typically, only one CPU is sufficient for long range force calculation.

