
Mitesh Agarwal
IT Architect – HPC Solutions
Sun Microsystems
mitesh.agarwal@sun.com

Grid Computing –
Technology, Trends & Attributes

http://sun.com/grid

Agenda
What is a Grid?

How Does it Work?

Underpinning Technologies

Types of Grids

Trends

Attributes

Discussions, Q&A

What Is Grid Computing?
A hardware and software infrastructure that connects
distributed computers, storage devices, databases and
software applications through a network, and is managed by
distributed resource management software

A way of using many resources to perform
many kinds of tasks, accessible from many
places by many people

A universal computing infrastructure that builds on the
power of the Net and enables more efficient computation,
collaboration, and communication

Grid Computing Explained

Problem-solving through resource pooling in virtual systems:

Virtualization of…

Transparent scalability of…

Access that is...

Resources into a dynamic, single compute
resource from federated assets

CPU cycles, storage

Dependable, consistent, pervasive, inexpensive

● Reduce Costs
● Increase Productivity
● Increase Quality
● Shorten Time to Market
● Transparent Growth
● Do things you couldn't do before

Why use Grid Computing?

The Strategic Need for Compute Power

Industry Computationally Intensive activities
Life Sciences Genetic sequencing, database queries

Electronic Design Simulations, verifications, regression testing
Financial Services Risk and portfolio analysis, simulations

Automotive Manufacturing Crash testing simulations, stress testing, aerodynamics modeling
Scientific Research Large computational problems, collaboration

Simulations, seismic analysis, visualization

Frame rendering

Oil and Gas
Exploration

Digital Content
Creation

Across Diverse Industries

Levels of Grid Computing

Enterprise Grids
• Multiple user communities
• Single organization

Global Grids
• Multiple user communities
• Multiple organizations

Department Grids
• Single user community
• Single organization

Grid Enabling Technologies

Department Grid Department Grid
Infrastructure Infrastructure

Global Grid Global Grid
Infrastructure Infrastructure

Enterprise Grid Enterprise Grid
Infrastructure Infrastructure

Service Service
Discovery Discovery

Authentication/Authentication/
Authorization Authorization

Data Data
Management Management

Policy Policy
Management Management

Resource Resource
Management Management

System System
Management Management

Data Data
Access Access

Across all levels of deployment

Industry Standards and partner technologies Industry Standards and partner technologies

OGSA, WSRFOGSA, WSRF
Globus Toolkit,Globus Toolkit,
AvakiAvaki

N1 Grid EngineN1 Grid Engine

N1 Grid ContainersN1 Grid Containers
N1 Grid Service ProvisioningN1 Grid Service Provisioning

SystemSystem
Sun Control StationSun Control Station
Sun QFS/SamFSSun QFS/SamFS
Solaris CacheFSSolaris CacheFS

Sun technologies Sun technologies

Grid Engine: Sun's Key
Grid Technology
● Software to manage jobs & resources on distributed systems
● Well-established software

– Initially developed in 1994, acquired by Sun in 2000
– Core technology powers over 8000 Grids worldwide

● N1 Grid Engine 6 :N1 Grid Engine 6 :

– Enterprise-scale components on top of open-source
core technology

– Fully supported by Sun on: Solaris, Linux, Mac OS X,
HP-UX, AIX, Irix (Windows: end of 2004)

Examples of Grids
Cycle-stealing: use resources
when unoccupied

Compute Farms: racks of
dedicated nodes

• "desktop grid"
• datacenter sharing

• High-throughput
• "Beowulf"

HPC Clusters: clumps of
large SMP systems
• Massively-parallel jobs,
eg, weather, astro

Or any combination of these

N1 Grid Engine Overview

#
BLAST

blastall -p
 blastn -i
 /nfs/data

Grid Engine

Selection of Jobs
 Job-based policies for resource ROI,

SLA, QoS, etc
 User-based policies for sharing,

ranking, by departments, projects,
user groups, etc

Selection of Resources
 System characteristics: CPU,

memory, OS, patches, etc.
 Status of systems: avail. mem,

load, free disk space, etc.
 Status of other resources: licenses,

shared storage, other software, etc.

Resource Management

N1 Grid Engine Overview

#
BLAST

blastall -p
 blastn -i
 /nfs/data

Grid Engine

Control of jobs
 Customizable action methods for

Suspend, Resume, Kill, Migrate,
Restart

 Manual or automated via triggers

Control of resources
 Regulate load on systems based

upon resource value thresholds
 Control access to systems via

permissions, time/date, jobtype

Resource Control

N1 Grid Engine Overview

#
BLAST

blastall -p
 blastn -i
 /nfs/data

Grid Engine

Accounting of jobs
 Current resource consumption

always monitored
 Total detailed consumption

recorded at end of job
 Includes record of user,

department, project, etc,

Accounting of resources
 Utilization of all resources recorded

(eg, CPU, memory, license, etc)
 Usage accounting kept for users,

departments, projects, etc.

Resource Accounting

Data Access

Exec
hosts

App binaries

Job data

CONFIGURED INDEPENDENTLY

NFS sharing

File staging

Data Grid

Grid Engine Architecture

Submit Host

Admin Host

Master Host

ScheddQmaster

Exec
Host

execd

Access Tier Compute TierManagement Tier

SGE daemons

TCP/IP

“host” = role

Batch Job Execution
job script

any script, eg,
#!/bin/csh
#!/bin/perl

● can do pre-work,
eg, preprocessing

● may stage in/out
binary/datasets,
if desired

● invokes application
with any options

Master
host

Spooled ontomaster host
at submission

Exec
host

sent to exec host

at execution

1)use job script, or
2)submit binary directly
% qsub -l memfree=1GB,
arch=linux, jobtype=analysis
myjob.sh arg1 arg2

applications run without
modification:

Interactive Applications

submit host
% qrsh mycadtool &

exec host
mycadtool \
DISPLAY on submit host

master

client command

server daemon

inte
rac

tive
 job

 req
ues

t

request dispatched

Allows demanding
interactive jobs to
be off-loaded to
more powerful
systems

rsh, telnet, ssh, etc.

Resources
Per Host, eg,
● load_avg
● mem_free
● OS/patch-level

Global, eg,
● floating licenses
● shared storage

● Job resource request: job A needs 1 license and 1GB
● Action thresholds: suspend jobs if load_avg > 1.5
● Resource preference: send jobs to hosts with least load;
out of those, choose hosts with most free memory

Resources used for

THE HEART OF GRID ENGINE MANAGEMENT

Built-in and custom resources
● Static resources: strings, numbers, boolean
● Countable resources: eg, licenses, MB of memory/disk
● Measured resources: value provided through Load Sensor

Parallel and Checkpointing
Environments
Environment: a set of hosts and associated
procedures that are used to support parallel or
checkpointing applications

applications must inherently support
parallel/checkpointing execution

Env BEnv A

H2

H3

H1 H4

H5

H6

H7

Application Integration Methods

queue/host prolog

job script

ENDqueue/host epilog

terminate method

resume method suspend method

parallel start

parallel stop

parallel stopqueue/host epilog migration command

clean command

requeue
job

checkpoint command

run at
specified
intervals

MIGRATE

SUSPEND

DELETE

START

EXIT

starter method

General methods Parallel methods Checkpointing methods

N1GE 6 Scheduler
Next-generation Functionality
● Sophisticated Policy system
– Align resource allocation with business priorities
– Ability to implement SLA, QoS guarantees
– Ensure greatest ROI for your assets

● Look-ahead planning
– Resource Reservation / Preemption / Backfilling

● Can reserve any resource, eg memory, CPU, license, disk

– Ensure that important jobs get the resources they
need, while maximizing overall utilization

1) Ticket-based Policies
Resource allocation aligned to business priorities

● policy basis includes: department, project, user groups, cumulative
utilization, category priority

● powerful, flexible, tunable, easy to configure

All jobs

High
Priority

Normal
Priority

Low
Priority

Dept A: 70
more rights to

high priority jobs
Dept B: 30

Dept A: 50

Dept B: 50

Dept A: 50

Dept B: 50

Group X:
temporary boost

Ticket policy: Share Tree

All jobs

Project 3
50%

Group B: 25%

Construct tree
according to
hierarchy of
groups

leaf must be project or user
user leaves can hang off
project leaf

Biology
25%

Chemistry
75%

user1
user2 user3

node

Project 4: 50%
Project 2: 50%Project 1: 50%

project leaf user leaf

user4 user5

Ticket Policy: Strict Order
Objective: strict determination of job dispatch order

● jobs grouped according to type or grouping

● jobs from certain groups go ahead of others, regardless of submit order or
current running jobs

Job Submit order
1) Project A: job1
2) Project C: job1
3) Project B: job1
4) Project C: job2
5) Project A: job2
6) Project C: job3
7) Project B: job2
8) Project A: job3
9) Project C: job4
10) Project C: job5
11) Project B: job3

Job Dispatch order
1) Project A: job1
2) Project A: job2
3) Project A: job3
4) Project B: job1
5) Project B: job2
6) Project B: job3
7) Project C: job1
8) Project C: job2
9) Project C: job3
10) Project C: job4
11) Project C: job5

“project” = type,
group, etc

Ticket Policy: Preferential Order
Objective: preferred hierarchy of groups of jobs

● jobs grouped according to projects, users, departments

● groups are given certain target percentage of resources

● scheduler tries to implement targets globally, eg, Project B jobs might go
before Project A jobs if Project B is using less than target share at that time

time

%
 o

f r
es

ou
rc

es

Project A

Project B

Project C

Unifying Ticket Policies

Sum of
all ticket

contributions

Share Tree policy
average entitlements over time

Functional policy
fixed entitlements

Override policy
fine-tuning, temporary changes

Number of tickets
affects priority of job

2) Urgency Policies

● Resource-based urgency: gives priority to
– expensive asset (SW license, $$$ server)
– demanding job (multi-CPU, lots of memory)

● Deadline-based urgency
– Enables SLA-type policies

● Wait-time urgency
– Enables quality-of-service guarantees

3) POSIX priority Sub-policy

● Priority value assigned to jobs with a
simple number between -1023 and 1024

● Used to implement site-specific custom
priorities (eg, external co-scheduler)

● Also enables admin override of any
other policies

Combining Policies
Final priority of jobs calculated based on
unifying the three sub-policies
Each policy normalized to 0.0 < N < 1.0
before combining using weight factors
Allows hierarchy of policies

prio = W
urg

 × N
urg

 + W
tix

 × N
tix

 + W
psx

 × N
psx

N

urg
= normalized Urgency

N
tix

 = normalized Tickets
N

psx
= normalized Posix

W = weighting factors

Resource Reservation:
an example

1 CPU
1 GB Mem
1 license

1 CPU
1 GB Mem

1 CPU
1 GB Mem

1 GB Mem

1 CPU
1 GB Mem

1 CPU
1 GB Mem

1 CPU
1 GB Mem

1 license

1 CPU

1 GB Mem
1 GB Mem
1 GB Mem

Job 1 Job 2 Job 3

Job 4

Job 5

Job 6

Jobs, with resource requirements
- number indicates priority
- length represents duration of
requirement

1 licenseJob duration

Grid Resources Representation

Time

C
PU

M
em

.
C

PU
M

em
.

Li
c.

Host 1

Host 2

Global

Simple, priority-based
scheduling

Time

C
PU

M
em

.
C

PU
M

em
.

Li
c.

Host 1

Host 2

Global

Job 1

Job 1

Job 6

Job 3

Job 3

Job 6

Job 3

Job 4

Job 4

Job 4

Job 5

Job 5

Job 2

Job 2

Job 2

Job 2

Job 2

Job 2
Job 2

Job 2
Job 2Wasted

resources

Goes last!

Job 6

Scheduling with
Resource Reservation

Time

C
PU

M
em

.
C

PU
M

em
.

Li
c.

Host 1

Host 2

Global

Job 1

Job 1

Job 3

Job 3
Job 3

Job 4

Job 4

Job 4

Job 5

Job 5

Job 2

Job 2

Job 2

Job 2

Job 2

Job 2
Job 2

Job 2
Job 2Wasted

resources

Job 6

Job 6

Job 6

Resources Reservation
with Backfilling

Time

C
PU

M
em

.
C

PU
M

em
.

Li
c.

Host 1

Host 2

Global

Job 1

Job 1

Job 6 Job 3

Job 3Job 6
Job 3

Job 4

Job 4

Job 4

Job 5

Job 5

Job 2

Job 2

Job 2

Job 2

Job 2

Job 2
Job 2

Job 2
Job 2

Job 6

N1GE 6 Reporting
Analysis / Monitoring / Accounting
● Module for doing analysis, monitoring,

accounting reports, etc.
– Fine-grained resource recording
– Stored in RDBMS in well-defined schema
– provides built-in capability for analysis,

reporting, chargeback, etc
– Web-based console tool provided for

generating reports, queries, etc.
– Standard SQL access for 3rd party tools

Example Analysis

03/01/04 04/01/04 05/01/04
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

CPU Usage

project4
project3
project2
project1
none

C
P

U
-s

ec
on

ds
DATA IMPORTED INTO STAROFFICE

N1GE 6 Enhanced Performance
Scalability
● Berkeley DB spooling
● Multi-threaded Master Daemon
● New communication system

● Scalability goals:
– 10,000 unique hosts
– 500,000 unique jobs

N1GE 6 Other Features
Standards Compliance
● DRMAA 1.0
– API to submit, control, monitor jobs
– Audience: developers who want to “grid-enable”

their applications, without customizing to
particular DRM/Grid system

– C-binding, Java-binding (future: Perl)
● XML-based monitoring
– Status command 'qstat' outputs full status info in

well-defined XML DTD

Grid Engine
● http://www.sun.com/grid

– Success stories
– Web-based training and testing
– Grid Certification course information
– Partner information

● http://www.sun.com/gridware

– Sun Grid Engine products
● http://gridengine.sunsource.net

– Open Source Project
– Mailing Lists for users, developers (get answers from SGE experts)
– FAQs, HOWTOs, documentation for users and developers
– Courtesy Binaries for all major Unix platforms

Useful Links

The Grid Architecture Dilemma:
Scale Vertically or Scale Horizontally?

Scale Vertically:
● Parallel applications: OpenMP
● Large Shared Memory
● Top Performance
● Higher acquisition cost
● Lower development and

management complexity & cost

Scale Horizontally:
● Serial and parallel applications: MPI
● Throughput
● Lower acquisition cost
● Higher development and management

complexity & cost

$/CPU

The Deciding
Factor

What do the
workloads

require?

SMP x86
Large Shared Memory X
32 bit x86 code X
64 bit x86 code X
Mixed x86 code X
Single Threaded X
Multi threaded X

SUN SANS DEMI 24 POINT SUBTITLES
Processor Choice

Node Selection

● Understand your workload characteristics
– Vertical or horizontal scaled
– Interconnect requirements
– Processor requirements

● 32 bit v 64 bit
● SPARC or x86 code
● Single threaded, multi-threaded

– Application requirements/restrictions

Qmon: N1 Grid Engine's GUI

Grid Engine Portal
● Web interface to Sun Grid Engine & SGE-EE

● Highly secure internet access to Grid applications

● Submit and Monitor SGE jobs (no Unix skills required)

● Securely upload input files to the Portal Server

● Securely download output files to local workstation

● View X-Windows based applications using VNC

● Register new applications to the Grid in minutes

● Dynamic Project Directory Creation

● Accounting capabilities

● Runs on Sun ONE Portal Server

Grid Engine Portal (Web Interface)

What Grid is Not
It’s not futuristic

Grid technology is:
Here now
Real

Based on solid technology
Ready to be delivered today!

Sun grid solutions are:

What Grid is Not
It’s not new technology

Sun has been an active participant in the
growth and development of grid technology

The evolution of grid has been ongoing
for many years

Sun has been assisting customers deploy grid
technology for several years

Sun’s Philosophy
“All Grid, All the Time”

Visualization

Storage Systems

Integration

Data
Grids

Compute
Grids

Graphics
Grids

Complete Grid Stack

Processor

Operating
System

Cluster
Management

C
R

S,
 S

up
po

rt,
 A

rc
hi

te
ct

ur
al

, P
ro

fe
ss

io
na

l
Se

rv
ic

es

Interconnect
Gigabit Myrinet Infiniband

SunFire Link

Grid
Management Sun N1 Grid Engine Sun N1 Grid Engine

Sun Control Station Sun Control Station

ApplicationsApplications

N
od

e
O

S
M

an
ag

em
en

t

Compute Grid: Systems to
Scale Horizontally
Low Cost Building blocks for Compute Grid Services

● Thin Servers
– V20z / V40z: 32bit x86, Solaris, Linux
– Compute Grid Rack (V20z)
– V210 / V240: 64bit SPARC, Solaris

● Small 4 - 8 way SMP Servers
– V480/490
– V880/890

Sun Proprietary/Confidential: Internal Use Only

Horizontal Compute Grid Rack
LANLAN

V20z with
RHAS2.1ESand CGM 1.0

Terminal ServerTerminal Server

V20z

V20z

V20z

V20z

V20z

V20z

V20z

V20z

V20z

V20z

V20z

Gigabit
Ethernet

Cisco 3750
Cisco 3750

KVM ShelfKVM Shelf

Gigabit
Ethernet

Keyboard/Video/Mouse
Extendable Shelf

Sun Fire V20z Compute
 nodes Customer Installed OS

Terminal server

Gigabit
Ethernet Switches

Target marketsTarget markets

● Electronic Design Electronic Design
Automation (EDA)Automation (EDA)

● Mechanical Computer-Mechanical Computer-
aided Engineering aided Engineering
(MCAE)(MCAE)

● PetroleumPetroleum
● Life SciencesLife Sciences

Compute Grid: Systems to Scale Vertically
Low Complexity Building blocks for Compute Grid Services

Sun Proprietary/Confidential: Internal Use Only

● Large SMP Servers
– SF V1280/E2900
– 4800/4900
– SF6800/E6900
– SF12K/E20K
– SF15K/E25K

Data Grid: HPC SAN

Sun StorEdge™Sun StorEdge™
Performance SuitePerformance Suite

Sun™ ClusterSun™ Cluster

HeterogeneousHeterogeneous
ClientClient

Sun StorEdge™Sun StorEdge™
Utilization SuiteUtilization Suite

Sun StorEdge™ 3900 SeriesSun StorEdge™ 3900 Series
Sun StorEdge QFS Shared File SystemsSun StorEdge QFS Shared File Systems

Solaris Linux IRIX AIX SolarisWin2K, NT HP-UX Future

Achieved
3 GB/Sec!

HPC SAN HPC SAN
Professional Professional
ServicesServices

Graphics Grid:
Access for More Users to Visualization Services at
Required Visual Quality and Performance Levels

StorageStorage ComputeCompute DisplayDisplay

ClientsClients

VisualizationVisualization

SAN/
NAS

Graphics
InterConnect

Digital
Video

Delivery

Visualization
Services

Over
LAN/WAN

Compute ClusterCompute Cluster

● Sun microprocessor designSun microprocessor design
● Large scale EDA computing Large scale EDA computing

using Cluster Grid approachusing Cluster Grid approach
● Best design practices for highly Best design practices for highly

productive computing productive computing

9-yrs compute time/day!
98% CPU usage 24/7/365!

10,000+ UltraSPARC CPUs in 3 grids
100% SPARC,Solaris,Storedge

30+ HA-clusters
520TB A5x00 & T3 DiskArrays

Gigabit networking
300 SunRays

250 EDA CAD Tools
Tape Robot Backups

15Ksqft space at 200Watts/sqft

The Sun Ranch

Sun Differentiation:
Innovation Through IP Ownership

Grid
Infrastructure

software
Compute

Grid

Data
Grid

Graphics
Grid

UltraSPARC
Sun Fireplane Architecture

Trusted Solaris

Sun Fire Link

Sun Fire V880Z
Sun Blade Family

Java 3D
Java AI

HPC SAN
QFS, SAM-FS, NFS
Sun StorEdge Family

N1 Grid Engine
HPC Cluster Tools

N1 Grid Portal

JES Studio Tools
JXTA

Infiniband

N1

Terascale Capability Clusters
SPARC & x86 Throughput Clusters

Sun Forum 3D

Mitesh Agarwal
IT Architect
Sun Microsystems
mitesh.agarwal@sun.com

Q&A

http://sun.com/grid

