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Group action: Examples

Group action: G → Aut (X ).
Orbit: x ∈ X , Ox = G .x

Example 1: R 	 R a.x = x + a.
There is only one orbit. (x , y ∈ R, (y − x).x = y).

Example 2: GLn(R) 	 Rn
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There are 2 orbits: {0}, {x ∈ Rn|x 6= 0}



Group action: Examples

Another example: GLn(C) 	 Mn(C)

A.X := AXA−1

Every matrix can be conjugated to a Jordan Canonical Form!
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0
. . .

. . .
. . .
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 0 · · · 0
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0
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.

.

. · · ·
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.

.
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0 · · · 0 .





Group action: Examples

Another example: GLn(C) 	 Mn(C)

A.X := AXA−1

Every matrix can be conjugated to a Jordan Canonical Form!




λ 0 0 · · ·
1 λ 0 . . .

0
. . .

. . .
. . .

· · · 0 1 λ

 0 · · · 0

0


µ 0 0 · · ·
1 µ 0 . . .

0
. . .

. . .
. . .

· · · 0 1 µ

 0 · · ·

.

.

. · · ·
. . .

.

.

.
0 · · · 0 .





Group action: Examples

Another example: GLn(C) 	 Mn(C)

A.X := AXA−1

Every matrix can be conjugated to a Jordan Canonical Form!




λ 0 0 · · ·
1 λ 0 . . .

0
. . .

. . .
. . .

· · · 0 1 λ

 0 · · · 0

0


µ 0 0 · · ·
1 µ 0 . . .

0
. . .

. . .
. . .

· · · 0 1 µ

 0 · · ·

.

.

. · · ·
. . .

.

.

.
0 · · · 0 .





Group actions on varieties

Variety in Cn: Solutions to a set of polynomials
in n-variables in Cn.

Zariski topology on Cn: Varieties are the closed sets!
Cn itself is a variety.

Morphisms: Maps between varieties given by polynomials.
f : Cn → C
f is a polynomial in n-variables.

Earlier example:
Mn(C) = Cn2

with Zariski topology.
GLn(C) 	 Mn(C)
Each A ∈ GLn gives a morphism. X 7→ AXA−1



Group actions on varieties

Variety in Cn: Solutions to a set of polynomials
in n-variables in Cn.

Zariski topology on Cn: Varieties are the closed sets!
Cn itself is a variety.

Morphisms: Maps between varieties given by polynomials.
f : Cn → C
f is a polynomial in n-variables.

Earlier example:
Mn(C) = Cn2

with Zariski topology.
GLn(C) 	 Mn(C)
Each A ∈ GLn gives a morphism. X 7→ AXA−1



Algebraic setting

Corresponding to a variety there is a ring called its co-ordinate ring.

The co-ordinate ring of a variety: Ring of morphisms from that
variety to C (also called regular maps).

Cn ↔ C[x1, . . . , xn].

Variety ↔ Ideal in C[x1, . . . , xn].
Co-ordinate ring of a variety in Cn

is C[x1, . . . , xn]/I .

Morphism between varieties ↔ Homomorphism of co-ordinate
rings.
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Group actions on varieties

Example revisited:

Mn(C)↔ C[x11, . . . , xnn]

Is the orbit space a variety? If so, what is its co-ordinate ring?

Mn(C)→ Mn(C)/GLn → C

A regular map constant on orbits has to be constant on the closure
of the orbit!!

Are orbits closed? NO. {
[
λ t
0 λ

]
|t ∈ Rx}

Upshot: It is NOT reasonable to expect a variety structure on
Mn(C)/GLn but rather on orbit closures.
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Invariant ring

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are
invariant on orbits.
This is called the Invariant ring for the given action.
We seek a description of this ring.

Earlier example: GLn(C) 	 Mn(C)
Candidates for C[Mn]GLn : Coefficients of characteristic polynomial.

Classical result

The algebra generated by these elements is the co-ordinate ring of
the space of orbit closures.
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Multilinear to polynomials

Another procedure: (This generalizes to the case of
GLn 	 Mn(C)d)
H.Weyl for characteristic 0, Other characteristics and other classical groups: DeConcini, Procesi, Donkin, Zubkov

The invariant polynomials are obtained by “restitution” of the
invariant multilinear functions.

f : Mn × · · · ×Mn → C

f (g .(x1, . . . , xd)) = f (x1, . . . , xd) for g ∈ GLn

Multi-linear function to invariant polynomial:
Example: Trace (X1X2) 7→ Trace X 2

So try to understand the space of multi-linear invariants.
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Invariant ring...

Multi-linear invariants on Md
n : The symmetric group Sd gives a

set of generators.

CSd
Θ−→ (End(V )⊗d)∗ V := Cn

[(i1, i2, . . .)(ik , ik+1, . . .) . . . (ip , ip+1, . . .)
Θ−→ [A1, . . . , Ad ) 7→

Trace(Ai1
Ai2

. . .). . .Trace(AipAip+1
. . .)]

Θ maps onto {(End(V )⊗d))∗}GL(V )

Our aim is to get a basis!
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Final remarks:

CSd
Θ−→ (End(Cn)⊗d)∗

RSK Basis

The permutations having no decreasing subsequence of length
bigger than n gives a basis for the ring of multi-linear invariants of
Md

n (C).

The proof involves the representation theory of the symmetric
group and its Hecke algebra.

It can be posed as a more general problem in the representation
theory of symmetric groups, involving tabloids. And the answer to
it involves RSK algorithm, hence the name.
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