RSK bases in invariant theory

Preena Samuel

Chennai Mathematical Institute

Group action: $G \to \operatorname{Aut}(X)$.

Orbit: $x \in X$, $\mathcal{O}_x = G.x$

Group action: $G \to \operatorname{Aut}(X)$.

Orbit: $x \in X$, $\mathcal{O}_x = G.x$

Example 1: $\mathbb{R} \circlearrowleft \mathbb{R}$ a.x = x + a.

Group action: $G \to \operatorname{Aut}(X)$.

Orbit: $x \in X$, $\mathcal{O}_x = G.x$

Example 1: $\mathbb{R} \circlearrowleft \mathbb{R}$ a.x = x + a.

There is only one orbit. $(x, y \in \mathbb{R}, (y-x).x = y)$.

Group action: $G \to \operatorname{Aut}(X)$.

Orbit: $x \in X$, $\mathcal{O}_x = G.x$

Example 1: $\mathbb{R} \circlearrowleft \mathbb{R}$ a.x = x + a.

There is only one orbit. $(x, y \in \mathbb{R}, (y-x).x = y)$.

Example 2: $GL_n(\mathbb{R}) \circlearrowleft \mathbb{R}^n$

Group action: $G \to \operatorname{Aut}(X)$.

Orbit: $x \in X$, $\mathcal{O}_x = G.x$

Example 1: $\mathbb{R} \circlearrowleft \mathbb{R}$ a.x = x + a.

There is only one orbit. $(x, y \in \mathbb{R}, (y-x).x = y)$.

Example 2: $GL_n(\mathbb{R}) \circlearrowleft \mathbb{R}^n$

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \ldots + a_{1n}x_n \\ \vdots \\ a_{n1}x_1 + \ldots + a_{nn}x_n \end{pmatrix}$$

Group action: $G \to \operatorname{Aut}(X)$.

Orbit: $x \in X$, $\mathcal{O}_x = G.x$

Example 1: $\mathbb{R} \circlearrowleft \mathbb{R}$ a.x = x + a.

There is only one orbit. $(x, y \in \mathbb{R}, (y-x).x = y)$.

Example 2: $GL_n(\mathbb{R}) \circlearrowleft \mathbb{R}^n$

There are 2 orbits: $\{\mathbf{0}\}$, $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{x} \neq \mathbf{0}\}$

Another example: $GL_n(\mathbb{C}) \circlearrowleft M_n(\mathbb{C})$

$$A.X := AXA^{-1}$$

Another example: $GL_n(\mathbb{C}) \circlearrowleft M_n(\mathbb{C})$

$$A.X := AXA^{-1}$$

Every matrix can be conjugated to a Jordan Canonical Form!

Another example: $\operatorname{GL}_n(\mathbb{C}) \circlearrowleft M_n(\mathbb{C})$

$$A.X := AXA^{-1}$$

Every matrix can be conjugated to a Jordan Canonical Form!

Variety in \mathbb{C}^n : Solutions to a set of polynomials

in *n*-variables in \mathbb{C}^n .

Zariski topology on \mathbb{C}^n : Varieties are the closed sets!

 \mathbb{C}^n itself is a variety.

Morphisms: Maps between varieties given by polynomials.

 $f:\mathbb{C}^n\to\mathbb{C}$

f is a polynomial in n-variables.

Variety in \mathbb{C}^n : Solutions to a set of polynomials

in *n*-variables in \mathbb{C}^n .

Zariski topology on \mathbb{C}^n : Varieties are the closed sets!

 \mathbb{C}^n itself is a variety.

Morphisms: Maps between varieties given by polynomials.

 $f:\mathbb{C}^n\to\mathbb{C}$

f is a polynomial in n-variables.

Earlier example:

 $M_n(\mathbb{C}) = \mathbb{C}^{n^2}$ with Zariski topology.

 $\mathrm{GL}_n(\mathbb{C}) \circlearrowleft M_n(\mathbb{C})$

Each $A \in GL_n$ gives a morphism. $X \mapsto AXA^{-1}$

Algebraic setting

Corresponding to a variety there is a ring called its *co-ordinate ring*.

The co-ordinate ring of a variety: Ring of morphisms from that variety to \mathbb{C} (also called regular maps).

$$\mathbb{C}^n \leftrightarrow \mathbb{C}[x_1,\ldots,x_n].$$

Algebraic setting

Corresponding to a variety there is a ring called its *co-ordinate ring*.

The co-ordinate ring of a variety: Ring of morphisms from that variety to $\mathbb C$ (also called regular maps).

$$\mathbb{C}^n \leftrightarrow \mathbb{C}[x_1,\ldots,x_n].$$

Variety

 \leftrightarrow Ideal in $\mathbb{C}[x_1, \dots, x_n]$. Co-ordinate ring of a variety in \mathbb{C}^n is $\mathbb{C}[x_1, \dots, x_n]/I$.

Morphism between varieties \leftrightarrow Homomorphism of co-ordinate rings.

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \ldots, x_{nn}]$$

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \ldots, x_{nn}]$$

$$M_n(\mathbb{C})/GL_n$$

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \dots, x_{nn}]$$

Is the orbit space a variety?

$$M_n(\mathbb{C})/GL_n$$

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \dots, x_{nn}]$$

Is the orbit space a variety? If so, what is its co-ordinate ring?

$$M_n(\mathbb{C}) \to M_n(\mathbb{C})/GL_n$$

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \ldots, x_{nn}]$$

Is the orbit space a variety? If so, what is its co-ordinate ring?

$$M_n(\mathbb{C}) \to M_n(\mathbb{C})/GL_n \to \mathbb{C}$$

A regular map constant on orbits has to be constant on the closure of the orbit!!

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \dots, x_{nn}]$$

Is the orbit space a variety? If so, what is its co-ordinate ring?

$$M_n(\mathbb{C}) \to M_n(\mathbb{C})/GL_n \to \mathbb{C}$$

A regular map constant on orbits has to be constant on the closure of the orbit!!

Are orbits closed?

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \dots, x_{nn}]$$

Is the orbit space a variety? If so, what is its co-ordinate ring?

$$M_n(\mathbb{C}) \to M_n(\mathbb{C})/GL_n \to \mathbb{C}$$

A regular map constant on orbits has to be constant on the closure of the orbit!!

Are orbits closed? NO.
$$\overline{ \left\{ \left[\begin{array}{cc} \lambda & t \\ 0 & \lambda \end{array} \right] | t \in \mathbb{R}^{\times} \right\} }$$

Example revisited:

$$M_n(\mathbb{C}) \leftrightarrow \mathbb{C}[x_{11}, \dots, x_{nn}]$$

Is the orbit space a variety? If so, what is its co-ordinate ring?

$$M_n(\mathbb{C}) \to M_n(\mathbb{C})/GL_n \to \mathbb{C}$$

A regular map constant on orbits has to be constant on the closure of the orbit!!

Are orbits closed? NO. $\left\{ \left[egin{array}{cc} \lambda & t \\ 0 & \lambda \end{array} \right] | t \in \mathbb{R}^{\times} \right\}$

Upshot: It is NOT reasonable to expect a variety structure on $M_n(\mathbb{C})/GL_n$ but rather on orbit closures.

Describe the co-ordinate ring of the space of orbit closures.

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are invariant on orbits.

This is called the Invariant ring for the given action.

We seek a description of this ring.

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are invariant on orbits.

This is called the Invariant ring for the given action.

We seek a description of this ring.

Earlier example: $\operatorname{GL}_n(\mathbb{C}) \circlearrowleft M_n(\mathbb{C})$

Candidates for $\mathbb{C}[M_n]^{\mathrm{GL}_n}$: Coefficients of characteristic polynomial.

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are invariant on orbits.

This is called the Invariant ring for the given action.

We seek a description of this ring.

Earlier example: $\operatorname{GL}_n(\mathbb{C}) \circlearrowleft M_n(\mathbb{C})$

Candidates for $\mathbb{C}[M_n]^{\mathrm{GL}_n}$: Coefficients of characteristic polynomial.

Classical result

The algebra generated by these elements is the co-ordinate ring of the space of orbit closures.

Another procedure: (This generalizes to the case of

$$GL_n \circlearrowleft M_n(\mathbb{C})^d$$

H.Weyl for characteristic 0, Other characteristics and other classical groups: DeConcini, Procesi, Donkin, Zubkov

Another procedure: (This generalizes to the case of $GL_n \circlearrowleft M_n(\mathbb{C})^d$)

H.Weyl for characteristic 0, Other characteristics and other classical groups: DeConcini, Procesi, Donkin, Zubkov

The invariant polynomials are obtained by "restitution" of the invariant multilinear functions.

$$f: M_n \times \cdots \times M_n \to \mathbb{C}$$

$$f(g.(x_1,\ldots,x_d))=f(x_1,\ldots,x_d)$$
 for $g\in\mathrm{GL}_n$

Another procedure: (This generalizes to the case of $GL_n \circlearrowleft M_n(\mathbb{C})^d$)

H.Weyl for characteristic 0, Other characteristics and other classical groups: DeConcini, Procesi, Donkin, Zubkov

The invariant polynomials are obtained by "restitution" of the invariant multilinear functions.

$$f: M_n \times \cdots \times M_n \to \mathbb{C}$$

$$f(g.(x_1, \dots, x_d)) = f(x_1, \dots, x_d) \text{ for } g \in GL_n$$

Multi-linear function to invariant polynomial:

Example: Trace $(X_1X_2) \mapsto \text{Trace } X^2$

Another procedure: (This generalizes to the case of $GL_n \circlearrowleft M_n(\mathbb{C})^d$)

H.Weyl for characteristic 0, Other characteristics and other classical groups: DeConcini, Procesi, Donkin, Zubkov

The invariant polynomials are obtained by "restitution" of the invariant multilinear functions.

$$f: M_n \times \cdots \times M_n \to \mathbb{C}$$

$$f(g.(x_1, \dots, x_d)) = f(x_1, \dots, x_d) \text{ for } g \in GL_n$$

Multi-linear function to invariant polynomial:

Example: Trace $(X_1X_2) \mapsto \text{Trace } X^2$

So try to understand the space of multi-linear invariants.

Multi-linear invariants on M_n^d : The symmetric group \mathfrak{S}_d gives a set of generators.

$$\mathbb{CS}_{d} \xrightarrow{\Theta} (End(V)^{\otimes d})^{*} V := \mathbb{C}^{n}$$

$$[(i_{1}, i_{2}, \ldots)(i_{k}, i_{k+1}, \ldots) \ldots (i_{p}, i_{p+1}, \ldots) \xrightarrow{\Theta} [A_{1}, \ldots, A_{d}) \mapsto$$

$$\mathsf{Trace}(A_{i_{1}}A_{i_{2}} \ldots) \ldots \mathsf{Trace}(A_{i_{p}}A_{i_{p+1}} \ldots)]$$

Multi-linear invariants on M_n^d : The symmetric group \mathfrak{S}_d gives a set of generators.

$$\mathbb{CS}_{d} \xrightarrow{\Theta} (End(V)^{\otimes d})^{*} V := \mathbb{C}^{n}$$

$$[(i_{1}, i_{2}, \ldots)(i_{k}, i_{k+1}, \ldots) \ldots (i_{p}, i_{p+1}, \ldots) \xrightarrow{\Theta} [A_{1}, \ldots, A_{d}) \mapsto$$

$$\mathsf{Trace}(A_{i_{1}}A_{i_{2}} \ldots) \ldots \mathsf{Trace}(A_{i_{p}}A_{i_{p+1}} \ldots)]$$

 Θ maps onto $\{(End(V)^{\otimes d})\}^*\}^{GL(V)}$

Multi-linear invariants on M_n^d : The symmetric group \mathfrak{S}_d gives a set of generators.

$$\mathbb{CS}_d \xrightarrow{\Theta} (End(V)^{\otimes d})^* V := \mathbb{C}^n$$

$$[(i_1, i_2, \dots)(i_k, i_{k+1}, \dots) \dots (i_p, i_{p+1}, \dots) \xrightarrow{\Theta} [A_1, \dots, A_d) \mapsto$$

$$\mathsf{Trace}(A_{i_1}A_{i_2} \dots) \dots \mathsf{Trace}(A_{i_p}A_{i_{p+1}} \dots)]$$

 Θ maps onto $\{(End(V)^{\otimes d})\}^*\}^{GL(V)}$

Our aim is to get a basis!

Final remarks:

$$\mathbb{CS}_d \xrightarrow{\Theta} (End(\mathbb{C}^n)^{\otimes d})^*$$

RSK Basis

The permutations having no decreasing subsequence of length bigger than n gives a basis for the ring of multi-linear invariants of $M_n^d(\mathbb{C})$.

Final remarks:

$$\mathbb{CS}_d \xrightarrow{\Theta} (End(\mathbb{C}^n)^{\otimes d})^*$$

RSK Basis

The permutations having no decreasing subsequence of length bigger than n gives a basis for the ring of multi-linear invariants of $M_n^d(\mathbb{C})$.

The proof involves the representation theory of the symmetric group and its Hecke algebra.

It can be posed as a more general problem in the representation theory of symmetric groups, involving tabloids. And the answer to it involves RSK algorithm, hence the name.