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Group action: Examples

Group action: G — Aut (X).
Orbit: x € X, O = G.x J

Example 1: ROR a.x =x+a.
There is only one orbit. (x, y € B, (y — x).x = y).

Example 2. GL,(R) O R”"
There are 2 orbits: {0}, {x € R"|x # 0}
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Group actions on varieties

Variety in C™: Solutions to a set of polynomials
in n-variables in C".

Zariski topology on C":  Varieties are the closed sets!
C" itself is a variety.

Morphisms: Maps between varieties given by polynomials.
f.C"—=C
f is a polynomial in n-variables.

Earlier example:

M,(C) = C™ with Zariski topology.

GL,(C) © M,(C)

Each A € GL,, gives a morphism. X — AXA™1
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Algebraic setting

Corresponding to a variety there is a ring called its co-ordinate ring.J

The co-ordinate ring of a variety: Ring of morphisms from that
variety to C (also called regular maps).

C" < Clx1, ..., Xn)-
Variety < Ideal in C[xq, ..., xp].
Co-ordinate ring of a variety in C"

is Clxi, ..., xn]/l.

Morphism between varieties <> Homomorphism of co-ordinate
rings.
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Group actions on varieties

Example revisited:

Mn((C) < C[Xll, e ,X,m]

Is the orbit space a variety? If so, what is its co-ordinate ring?
M,(C) - M,(C)/GL, — C

A regular map constant on orbits has to be constant on the closure
of the orbit!!

At

Are orbits closed? NO. {{ 0\

]|teRX}

Upshot: It is NOT reasonable to expect a variety structure on
M,(C)/GL, but rather on orbit closures.




Invariant ring

Describe the co-ordinate ring of the space of orbit closures.



Invariant ring

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are
invariant on orbits.

This is called the Invariant ring for the given action.

We seek a description of this ring.



Invariant ring

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are
invariant on orbits.

This is called the Invariant ring for the given action.

We seek a description of this ring.

Earlier example: GL,(C) © M,(C)
Candidates for C[M,]%": Coefficients of characteristic polynomial.



Invariant ring

Describe the co-ordinate ring of the space of orbit closures.

Candidate: regular maps (on the original space) which are
invariant on orbits.

This is called the Invariant ring for the given action.

We seek a description of this ring.

Earlier example: GL,(C) © M,(C)
Candidates for C[M,]%": Coefficients of characteristic polynomial.

Classical result

The algebra generated by these elements is the co-ordinate ring of
the space of orbit closures.
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Multilinear to polynomials

Another procedure: (This generalizes to the case of
GL, O M,(C)9)

H.Weyl for characteristic 0, Other characteristics and other classical groups: DeConcini, Procesi, Donkin, Zubkov

The invariant polynomials are obtained by “restitution” of the
invariant multilinear functions.

f:M,x---xM,—C

Multi-linear function to invariant polynomial:
Example: Trace (X1X2) — Trace X2

So try to understand the space of multi-linear invariants.
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Invariant ring...

Multi-linear invariants on M¢: The symmetric group G4 gives a
set of generators.
C&q 2 (End(V)®9)*  V:=Cn

[(its 2, - Wi iksts ) - Uips ipgas - - -) = [Ag, oo, Ag) —
Trace(A,—1 Apy - .. ATrace(A,-pA,-erl .|
© maps onto {(End(V)®9))*}6L(V) ]

Our aim is to get a basis!
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Final remarks:

C&y 25 (End(CM)®?)*

RSK Basis

The permutations having no decreasing subsequence of length
bigger than n gives a basis for the ring of multi-linear invariants of
M (C).

The proof involves the representation theory of the symmetric
group and its Hecke algebra.

It can be posed as a more general problem in the representation
theory of symmetric groups, involving tabloids. And the answer to
it involves RSK algorithm, hence the name.



