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Dynamical Systems
Study of behaviour of anything that moves 

with time.  
• Flapping of a butterfly’s wing
• Water waves (Tsunami)
• Tornado 
• Motion of a particle
• Oscillating Chemical Reactions
• Growth patterns
• Neuronal activities in Brain
It could be in discrete time or in continuous time.  
It could be regular or chaotic.  We discuss some 

specific examples  now.
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Single Pendulum
• Single Pendulum behaves nicely. 
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Double Pendulum

• But double pendulum displays chaos.
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Belousov-Zhabotinsky reaction
•Describes changes in chemical concentrations (Ce3+ ⁄Ce4+ couple as catalyst 
and Citric Acid as reactant)
• Model using reaction diffusion equations ut = ∇2u + f(u). 
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Mathematical models for neuronal 
• Goal is to model how the voltage across a cell membrane 

changes over time (My former colleague Amitabh Bose works in 
this field). 

• Hodgkin and Huxley derived equations in 1950’s to describe 
this. They found that neurons behave almost like electrical 
circuits.

• Example trace from a bursting neuron related to breathing.
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• A map T: X→ X is said to be distal if two     
distinct orbits stay away from each other. 

   i.e. for two distinct points x ≠ y, there   
is some minimum positive distance 
between Tn(x) and Tn(y)  for all n. 
(Respectively T

t
(x) and T

t
(y) remain at 

minimum positive distance for all t).

• Distal maps were introduced by Hilbert 
and studied by many mathematicians. 
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Distal Maps
• Distal maps are important for many reasons.
• It facilitates the study of nonergodic maps. 
• Also the space of probability measures on 

distal groups (conjugacy maps are distal) 
have special properties, for. e.g. on compact 
groups, discrete groups, abelian groups (real 
line), finite groups etc. 
• We will give a splitting of the space into 

invariant ergodic components as we shall see 
later. 
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Examples
• On real line R, if we take a map 
T(x)=r(x), then it is distal if and only if 
r=+1 or -1. 
• Here, Tn(x) = x or –x for all $n$. 
• If |r|<1, then T contracts any point and 
orbit of any point goes to zero.
• Namely, Tn(x) = rnx → 0 as n tends to 
infinity all $x$. So it can not be distal.
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Rotations on Unit Circle S1

• If T : S1 →  S1    is a rotation T(x) = rx, 
where  r=e 2пiѳ for some ѳ. If ѳ is rational 
then any x has finite (periodic) orbit. 
• If ѳ is irrational, then any point has a 
dense orbit.   In this case, the map T is 
ergodic.
• In both cases, the map T is distal. 
• In most cases, ergodicity and distality are 
two opposite phenomena. 

• We next have a pictorial description of rotation maps 
thanks to my former colleague Amitabh Bose .   
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Periodic orbit Dense orbit

1st Cycle

2nd Cycle

3rd Cycle

4th Cycle
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Orbits of T
• A map is said to have [MOC] if the closed 

orbits  cl{Tn(x)}   (or  cl{Tt(x)})  are minimal 
closed T-invariant sets. 
• That is, closed orbits do not contain any 

proper (closed) T-invariant subset.
• [MOC] stands for “Minimal Orbit Closures”.
• If T has [MOC], then X splits into distinct         

T-invariant components (closed orbits) and 
the T-action on each component is ergodic.
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Example 
• Take a torus S1 × S1. It looks like a donut.  

Take a map T(r, s) = (rs, s). It twists the 
donut. 
• This map is distal and any orbit is either 

finite (periodic) or a dense in a circle of the 
form S1 × {s}.
• So no orbit is dense in the torus S1 × S1. 
• This map T has [MOC].                              

(Here we have some pictures.)
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Torus after one iteration of 
T
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Torus after one iteration 
of T
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Torus After a few Iteration of 
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Distality and Orbits
•  If G is a Locally group, then for 

automorphism T: X → X, [MOC] implies 
Distality. 
• Conversely, we would like to discuss the 

following question: 
• Does Distality imply [MOC]? 
• If T is distal, is each orbit closure cl{Tn(x)} (or 

cl{Tt(x)}) a minimal closed invariant set? 
• This is known to be true for any distal action 

on compact spaces, (for e.g. rotation maps, 
or the map on torus described before).
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• It is indeed true that                     

 
 
 Distality  [MOC]

   On a locally compact group, T (or {Tt}) 
action is distal if and only if it has 
[MOC].

    (For e.g. on Lie groups are locally like 
Euclidean spaces;  closed subgroups of 
the matrix group; GL(n,R)=group of n×n 
invertible matrices≈ Linear 
transformations on Rn). 
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